OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 11 — May. 29, 2006
  • pp: 4757–4764

Azimuthal modulation instability for a cylindrically polarized wave in a nonlinear Kerr medium

Joseph W. Haus, Zasim Mozumder, and Qiwen Zhan  »View Author Affiliations

Optics Express, Vol. 14, Issue 11, pp. 4757-4764 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (195 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Inhomogeneously polarized optical waves form a class of nonlinear vector wave propagation that has not been widely studied in the literature. We find a modulation instability only when the wave has nonzero ellipticity in a medium where the Kerr nonlinearity possesses opposite handness. Under the modulation instability the wave develops an azimuthally periodic shape with two or four peaks.

© 2006 Optical Society of America

OCIS Codes
(190.3100) Nonlinear optics : Instabilities and chaos
(190.3270) Nonlinear optics : Kerr effect
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in

ToC Category:
Nonlinear Optics

Original Manuscript: February 21, 2006
Revised Manuscript: May 19, 2006
Manuscript Accepted: May 19, 2006
Published: May 29, 2006

Joseph W. Haus, Zasim Mozumder, and Qiwen Zhan, "Azimuthal modulation instability for a cylindrically polarized wave in a nonlinear Kerr medium," Opt. Express 14, 4757-4764 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Stalder and M. Schadt, "Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters," Opt. Lett. 21, 1948-1950 (1996). [CrossRef] [PubMed]
  2. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, "The formation of laser beams with pure azimuthal or radial polarization," Appl. Phys. Lett. 77, 3322-3324 (2000). [CrossRef]
  3. Q. Zhan, "Radiation forces on a dielectric sphere produced by a highly focused cylindrical vector beam," J. Opt. A: Pure and Appl. Opt. 5, 229-232 (2003). [CrossRef]
  4. Q. Zhan and J. R. Leger, "Focus shaping using cylindrical vector beams," Opt. Express 10, 324-331 (2002). [PubMed]
  5. L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens system," Opt. Commun. 191, 161-172 (2001). [CrossRef]
  6. A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, "Plasmon-coupled tip enhance near-field optical microscopy," J. of Microsc. 210, 220-224 (2003). [CrossRef]
  7. Q. Zhan, "Trapping metallic Rayleigh particles with radial polarization," Opt. Express,  12, pp. 3377-3382, (2004). [CrossRef] [PubMed]
  8. Y. Q. Zhao, Q. Zhan, Y. L. Zhang, and Y. P. Li, "Creation of a three-dimensional optical chain for controllable particle delivery," Opt. Lett. 30, 848-850 (2005). [CrossRef] [PubMed]
  9. V. G. Niziev and A. V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D. 32, 1455-1461 (1999). [CrossRef]
  10. Y. Kivshar and G. P. Agrawal, Opitcal solitons: from fiber to photonic crystals (Elsevier, Amsterdam, 2003).
  11. H. Wang and W. She, "Nonparaxial optial Kerr vortex soliton with radial polarization," Opt. Express 14,1590-1595 (2006). [CrossRef] [PubMed]
  12. G. A. Swartzlander and C. T. Law, "Optical vortex solitons observed in Kerr nonlinear media," Phys. Rev. Lett. 69, 2503-2506 (1992). [CrossRef] [PubMed]
  13. D. Rozas, Z. S. Sacks, and G. A. Swartzlander, "Experimental observation of fluidlike motion of optical vortices," Phys. Rev. Lett. 79, 3399-3402 (1997). [CrossRef]
  14. J. M. Soto-Crespo, E. M. Wright, and N. N. Akhmediev, "Recurrence and azimuthal-symmetry breaking of a cylindrical Gaussian beam in a saturable self-focusing medium," Phys. Rev. A 45, 3168-3175 (1992). [CrossRef] [PubMed]
  15. A. S. Desyatnikov, A. A. Sukhorukov, and Y. S. Kivshar, "Azimuthons: spatially modulated vortex solitons," Phys. Rev. Lett. 95, 203904 (2005). [CrossRef] [PubMed]
  16. D. Mihalache, D. Mazilu, L.-C. Crasovan, B. A. Malomed, and F. Lederer, "Azimuthal instability of spinning spatiotemporal solitons," Phys. Rev. E 62,R1505-R1508 (2000). [CrossRef]
  17. D. V. Petrov, L. Torner, J. Martorell, R. Vilseca, J. P. Torres, and C. Cojocaru, "Observation of azimuthal modulation instability and formation of patterns of optical solitons in quadratic nonlinear crystal," Opt. Lett 23, 1444-1447 (1998). [CrossRef]
  18. P. D. Maker and R. W. Terhune, "Study of Optical effects due to an induced polarization third order in the electric field strength," Phys. Rev. 137, A801 (1965). [CrossRef]
  19. R.W. Boyd, Nonlinear Optics (Academic Press, San Diego, CA, 1992).
  20. M. S. Malcuit, D. J. Gauthier, and R. W. Boyd, "Vector phase conjugation by two-photon-resonant degenerate four-wave mixing," Opt. Lett. 13, 663-665 (1988). [CrossRef] [PubMed]
  21. D. J. Gauthier, M. S. Malcuit, A. L. Gaeta, and R. W. Boyd, "Polarization bistability of counterpropagating laser beams,"Phys. Rev. Lett. 64, 1721-1724 (1990). [CrossRef] [PubMed]
  22. J. A. Fleck, J. R. Morris, and M. D. Feit, "Time dependent propagation of high energy laser beams through the atmosphere," Appl. Phys. 10, 129-160 (1976). [CrossRef]
  23. K. D. Moll, A. Gaeta, and G. Fibich, "Self-similar optical wave collapse: Observation of the Townes Profile," Phys. Rev. Lett. 90, 203902 (2003 [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (505 KB)     
» Media 2: AVI (2540 KB)     
» Media 3: AVI (393 KB)     
» Media 4: AVI (382 KB)     
» Media 5: AVI (351 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited