OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 12 — Jun. 12, 2006
  • pp: 5657–5663

Investigation of enhanced and suppressed optical transmission through a cupped surface metallic grating structure

Changjun Min, Xiaojin Jiao, Pei Wang, and Hai Ming  »View Author Affiliations


Optics Express, Vol. 14, Issue 12, pp. 5657-5663 (2006)
http://dx.doi.org/10.1364/OE.14.005657


View Full Text Article

Enhanced HTML    Acrobat PDF (187 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two-dimensional finite-difference time-domain (FDTD) method has been performed to numerically investigate the transmission through a one-dimension cupped surface metallic grating structure. The concept of coupling of optical modes in the notches and main slits, introduced by Crouse and Keshavareddy [1], is examined further in our work. Unexpected phenomenon is shown that even horizontal surface plasmons (HSPs) are inhibited, the transmission still can be enhanced or suppressed. And the periodicity of transmission depending on the phase change of the light striking on the grating surface is discovered. A hybrid optical mode combined by cavity mode and diffracted evanescent wave mode [2] is introduced to analyze the phenomenon.

© 2006 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 7, 2006
Revised Manuscript: May 17, 2006
Manuscript Accepted: May 26, 2006
Published: June 12, 2006

Citation
Changjun Min, Xiaojin Jiao, Pei Wang, and Hai Ming, "Investigation of enhanced and suppressed optical transmission through a cupped surface metallic grating structure," Opt. Express 14, 5657-5663 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-12-5657


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Crouse and P. Keshavareddy, "Role of optical and surface plasmon modes in enhanced transmission and applications," Opt. Express. 13, 7760-7771 (2005). [CrossRef] [PubMed]
  2. H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express. 12, 3629-3651 (2004). [CrossRef] [PubMed]
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London).  391, 667-669 (1998). [CrossRef]
  4. T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, "Control of optical transmission through metals perforated with subwavelength hole arrays," Opt. Lett. 24, 256-258 (1999). [CrossRef]
  5. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000). [CrossRef]
  6. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, and L. Martin-Moreno, and F.J. Garcıa-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001). [CrossRef]
  7. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999). [CrossRef]
  8. Q. Cao and P. Lalanne," Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002). [CrossRef] [PubMed]
  9. P. N. Stavrinou and L. Solymar, "The propagation of electromagnetic power through subwavelength slits in a metallic grating," Opt. Commun. 206,17-223 (2002). [CrossRef]
  10. X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, "Fabry-Perot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits," Appl. Phys. B. 80, 301-305 (2005). [CrossRef]
  11. K.G. Lee and Q-Han Park,"Coupling of Surface Plasmon Polaritons and Light in Metallic nanonoslits, " Phys. Rev. Lett..95, 103902 (2005) [CrossRef] [PubMed]
  12. E. D. Palik, Handbook of Optical Constants of Solids, (Academic Press, London 1985).
  13. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed., (Artech House, Boston, MA 2000).
  14. J. B. Jubkins, and R. W. Ziolkowski, "Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings, "J. Opt. Soc. Am. A. 12, 1974 (1995). [CrossRef]
  15. P. Harms, R. Mittra, and W. Ko, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," IEEE Trans. Antennas Propag. 42, 1317 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited