OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 16 — Aug. 7, 2006
  • pp: 7252–7269

Unforced polarization-based optical implementation of Binary logic

Y. A. Zaghloul and A. R. M. Zaghloul  »View Author Affiliations


Optics Express, Vol. 14, Issue 16, pp. 7252-7269 (2006)
http://dx.doi.org/10.1364/OE.14.007252


View Full Text Article

Enhanced HTML    Acrobat PDF (214 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We preset a new method to optically represent and implement binary logic, and we implement some unforced logic gates. The binary logic zero and one are taken to be an optical beam, or any electromagnetic wave, that is polarized at a selected state and its negation, orthogonal counterpart, or otherwise. In one implementation, a thin-film system is then designed and used so as it can move between 2 positions producing the net desired polarization change of the output. The output consists of a wave that is polarized either in the direction of the original logic 1 or 0 or any other chosen state and its negation, orthogonal counterpart. The system can be cascaded infinitely due to the fact that the output and input are both of the same format and that the logic zero and one are not dependant on the intensity of the input or the output light beam. The unforced gates exclusive OR and exclusive NOR along with a simple inverter are demonstrated in this communication. We present three design architectures, where each has two types of gates. In one type of gates the polarization state magnitude can carry information that can be employed for testability or reverse logic. XOR, XNOR, and inverter gate designs and operation are discussed in detail, and an easy-to-follow step-by-step algorithm is presented. The introduced architectures are easily adapted for simultaneous cascading, multiple input designs, and integrated optical architecture. * Patent Pending

© 2006 Optical Society of America

OCIS Codes
(200.0200) Optics in computing : Optics in computing
(200.3760) Optics in computing : Logic-based optical processing
(200.4660) Optics in computing : Optical logic
(200.4740) Optics in computing : Optical processing

ToC Category:
Optical Computing

History
Original Manuscript: June 20, 2006
Revised Manuscript: July 26, 2006
Manuscript Accepted: July 27, 2006
Published: August 7, 2006

Citation
Y. A. Zaghloul and A. R. M. Zaghloul, "Unforced polarization-based optical implementation of Binary logic," Opt. Express 14, 7252-7269 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-16-7252


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. W. Lohmann, "Polarization and optical logic," Appl. Opt. 25, 1594 - 1597 (1986). [CrossRef] [PubMed]
  2. A. W. Lohmann and J. Weigelt, "Spatial filtering logic based on polarization," Appl. Opt. 26, 131 - 135 (1987). [CrossRef] [PubMed]
  3. H. Peng, L. Liu, Y. Yin, and Z Wang, "Integrated polarization-optical logic processor," Opt. Commun. 112, 131 - 135 (1994). [CrossRef]
  4. W. Wu, S. Campbell, S. Zhou, and P. Yeh, "Polarization-encoded optical logic operations in photorefractive media," Opt. Lett. 18, 1742 - 1744 (1993). [CrossRef] [PubMed]
  5. M. A. Handschy, K. M. Johnson, W. T. Cathey, and L. A. Pagano-Stauffer, "Polarization-based optical parallel logic gate utilizing ferroelectric liquid crystals," Opt. Lett. 12, 611 - 613 (1987). [CrossRef] [PubMed]
  6. M. A. Habli and K. Leonik, "Polarization-coded optical logic gates for N-inputs," Optik 91, 100 - 102 (1992).
  7. F. Yu and G. Zheng, "An improved polarization-encoded logic algebra (PLA) used for the design of an optical logic gate for a 2D data array: theory," Opt. Commun. 115, 585 - 596 (1995). [CrossRef]
  8. M. A. Karim, A. A. S. Awwal, and A. K. Cherri, "Polarization-encoded optical shadow-casting logic units: design," Appl. Opt. 26, 2720 - 2725 (1987). [CrossRef] [PubMed]
  9. J. U. Ahmed and A. A. S. Awwal, "Polarization-encoded optical shadow-casting arithmetic-logic-unit design: separate and simultaneous output generation," Appl. Opt. 31, 5622 - 5631 (1992). [CrossRef] [PubMed]
  10. M. S. Alam and M. A. Karim, "Multiple-valued logic based multiprocessor using polarization-encoded optical shadow-casting," Opt. Commun. 96, 164 -173 (1993). [CrossRef]
  11. R. Torroba, R. Henao, and C. Carletti, "Polarization encoded architecture for optical logic operations," Optik 107, 41 - 43 (1997).
  12. N. Nishimura, Y. Awatsuji, and T. Kubota, "Analysis and evaluations of logical instructions called in parallel digital optical operations based on optical array logic," Appl. Opt. 42, 2532 - 2545 (2003). [CrossRef] [PubMed]
  13. G. R. Kumar, B. P. Singh, K. D. Rao, and K. K. Sharma, "Polarization-based optical logic using laser-excited gratings," Opt. Lett. 15, 245 - 247 (1990). [CrossRef] [PubMed]
  14. R. Torroba, R. Henao, and C. Carletti, "Digital polarization-encoding technique for optical logic operations," Opt. Lett. 21, 1918 - 1920 (1996). [CrossRef] [PubMed]
  15. A. R. M. Zaghloul, R. M. A. Azzam, and N. M. Bashara, "Design of film-substrate single-reflection retarders," J. Opt. Soc. Am. 65, 1043 - 1049 (1975). [CrossRef]
  16. M. S. A. Yousef and A. R. M. Zaghloul, "Ellipsometric function of a film-substrate system: characterization and detailed study,: J. Opt. Soc. Am. A 6, 355 - 366 (1989). [CrossRef]
  17. A. R. M. Zaghloul, D. A. Keeling, W. A. Berzett, and J. S. Mason, "Design of reflection retarders by use of nonnegative film-substrate systems," J. Opt. Soc. Am. A 22, 1637 - 1645 (2005). [CrossRef]
  18. A. R. M. Zaghloul, M. Elshazly-Zaghloul, W. A. Berzett, and D. A. Keeling, "Thin film coatings: A transmission ellipsometric function (TEF) approach I. Non-negative transmission systems, polarization-devices, coatings, and closed-form design formulae," Appl. Opt., Submitted for publication. [PubMed]
  19. D. Clarke and J. F. Grainger, Polarized light and optical measurement (Pergamon, New York, 1971).
  20. Y. A. Zaghloul and A. R. M. Zaghloul, "Complete all-optical-processing polarization-based binary-logic representation, gates, and optical processors," Opt. Express, Submitted for publication.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited