OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 16 — Aug. 7, 2006
  • pp: 7342–7352

Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms

Kunimasa Saitoh, Nikolaos John Florous, Tadashi Murao, and Masanori Koshiba  »View Author Affiliations

Optics Express, Vol. 14, Issue 16, pp. 7342-7352 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (2915 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The objective of the present investigation is to propose and theoretically demonstrate the effective suppression of higher-order modes in large-hollow-core photonic band gap fibers (PBGFs), mainly for low-loss data transmission platforms and/or high power delivery systems. The proposed design strategy is based on the index-matching mechanism of central air-core modes with defected outer core modes. By incorporating several air-cores in the cladding of the PBGF with 6-fold symmetry it is possible to resonantly couple the light corresponding to higher-order modes into the outer core, thus significantly increasing the leakage losses of the higher-order modes in comparison to the fundamental mode, thus making our proposed design to operate in an effectively single mode fashion with polarization independent propagation characteristics. The validation of the procedure is ensured with a detailed PBGF analysis based on an accurate finite element modal solver. Extensive numerical results show that the leakage losses of the higher-order modes can be enhanced in a level of at least 2 orders of magnitude in comparison to those of the fundamental mode. Our investigation is expected to remove an essential obstacle in the development of large-core single-mode hollow-core fibers, thus enabling them to surpass the attenuation of conventional fibers.

© 2006 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2330) Fiber optics and optical communications : Fiber optics communications
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Photonic Crystal Fibers

Original Manuscript: June 15, 2006
Revised Manuscript: July 18, 2006
Manuscript Accepted: July 21, 2006
Published: August 7, 2006

Kunimasa Saitoh, Nikolaos J. Florous, Tadashi Murao, and Masanori Koshiba, "Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms," Opt. Express 14, 7342-7352 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  2. S. Kawanishi, T. Yamamoto, H. Kubota, M. Tanaka, and S. Yamaguchi, "Dispersion controlled and polarization maintaining photonic crystal fibers for high performance network systems,"IEICE Trans. Electron. E87-C, 336-342 (2004).
  3. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  4. P. Roberts, D. Williams, B. Mangan, H. Sabert, F. Couny, W. Wadsworth, T. Birks, J. Knight, and P. Russell, "Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround," Opt. Express 13, 8277-8285 (2005). [CrossRef] [PubMed]
  5. G. Humbert, J. Knight, G. Bouwmans, P. Russell, D. Williams, P. Roberts, and B. Mangan, "Hollow core photonic crystal fibers for beam delivery," Opt. Express 12, 1477-1484 (2004). [CrossRef] [PubMed]
  6. J. Shephard, J. Jones, D. Hand, G. Bouwmans, J. Knight, P. Russell, and B. Mangan, "High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers," Opt. Express 12, 717-723 (2004). [CrossRef] [PubMed]
  7. T. Murao, K. Saitoh, and M. Koshiba, "Design of air-guiding modified honeycomb photonic band-gap fibers for effectively single mode operation," Opt. Express 14, 2404-2412 (2006). [CrossRef] [PubMed]
  8. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13, 236-244 (2005. [CrossRef] [PubMed]
  9. J. M. Fini. "Design of solid and microstructure fibers for suppression of higher order modes," Opt. Express 13, 3477-3490 (2005). [CrossRef] [PubMed]
  10. L. Lavoute, P. Roy, A. Desfarges-Berthelemot, V. Kermène, and S. Février, "Design of microstructured single-mode fiber combining large mode area and high rare earth ion concentration," Opt. Express 14, 2994-2999 (2006. [CrossRef] [PubMed]
  11. F. Gerome, J. L. Auguste, and J. M. Blondy. "Design of dispersion-compensating fibers based on a dual concentric-core photonic crystal fiber," Opt. Lett. 29, 2725-2727 (2004). [CrossRef] [PubMed]
  12. K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003). [CrossRef] [PubMed]
  13. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002). [CrossRef]
  14. H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic bandgap fibers free of surface modes," IEEE J. Quantum Electron. 40, 551-556 (2004). [CrossRef]
  15. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allen, and K. W. Koch, "Low-loss hollow-core silica/air photonic band-gap fibre," Nature 424, 657-659 (2003). [CrossRef] [PubMed]
  16. K. Saitoh and M. Koshiba, "Photonic bandgap fibers with high birefringence," IEEE Photon. Technol. Lett. 14, 1291-1293 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited