OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 17 — Aug. 21, 2006
  • pp: 7623–7629

Design of Talbot array illuminators for three-dimensional intensity distributions

Markus Testorf, Thomas J. Suleski, and Yi-Chen Chuang  »View Author Affiliations


Optics Express, Vol. 14, Issue 17, pp. 7623-7629 (2006)
http://dx.doi.org/10.1364/OE.14.007623


View Full Text Article

Enhanced HTML    Acrobat PDF (299 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The self-imaging phenomenon is investigated as the basis for designing diffractive optical elements to generate three-dimensional diffraction patterns. The phase-only diffractive element is related to the intensity distribution at a finite and discrete set of Fresnel diffraction planes by use of the matrix formalism of the fractional Talbot effect. This description provides a framework to determine the degrees of freedom which can be exploited for design. It also helps to identify inherent symmetries of periodic wavefronts, which limit the set of intensity patterns that can be implemented. A simulated annealing algorithm is used to exploit the design freedom. Our discussion includes an example to illustrate observations applicable to a more general class of design problems.

© 2006 Optical Society of America

OCIS Codes
(050.1380) Diffraction and gratings : Binary optics
(050.1970) Diffraction and gratings : Diffractive optics
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects

ToC Category:
Fourier Optics and Optical Signal Processing

History
Original Manuscript: May 23, 2006
Revised Manuscript: July 18, 2006
Manuscript Accepted: July 22, 2006
Published: August 21, 2006

Citation
Markus Testorf, Thomas J. Suleski, and Yi-Chen Chuang, "Design of Talbot array illuminators for three-dimensional intensity distributions," Opt. Express 14, 7623-7629 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-17-7623


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. N. Mait, "Understanding diffractive optic design in the scalar domain," J. Opt. Soc. Am. A 12, 2145-2158 (1995). [CrossRef]
  2. M. C. King, A. M. Noll, and D. H. Berry, "A new approach to computer generated holograms," Appl. Opt. 9, 471-475 (1970). [CrossRef] [PubMed]
  3. T. Yatagai, "Steroscopic approach to 3-D display using computer generated holograms," Appl. Opt. 15, 2722-2729 (1976). [CrossRef] [PubMed]
  4. C. Frere, D. Leseberg, and O. Bryngdahl, "Computer-generated holograms of three-dimensional objects composed of line segments," J. Opt. Soc. Am. A 3, 726-730 (1986). [CrossRef]
  5. S. Jeon, E. Menard, J.-U. Park, J. Maria, M. Meitl, J. Zaumseil, and J. A. Rogers, "Three-dimensional nanofabrication with rubber stamps and conformable photomasks," Adv. Mater. 16(15), 1369-1373 (2004). [CrossRef]
  6. R. Piestun and J. Shamir, "Control of wave-front propagation with diffractive elements," Opt. Lett. 19, 771-773 (1994). [CrossRef] [PubMed]
  7. R. Piestun, B. Spektor, and J. Shamir, "Pattern generation with an extended focal depth," Appl. Opt. 37, 5394-5398 (1998). [CrossRef]
  8. R. Liu, B.-Z. Dong, G.-Z. Yang, and B.-Y. Gu, "Generation of pseudo-nondiffractive beams with use of diffractive phase elments designed by the conjugate gradient method," J. Opt. Soc. Am. A 15, 144-151 (1998). [CrossRef]
  9. U. Levy, D. Mendlovic, Z. Zalevsky, G. Shabtay, and E. Marom, "Iterative algorithm for determining optimal beam profiles in a three-dimensional space," Appl. Opt. 38, 6732-6736 (1999). [CrossRef]
  10. N. Guerineau, B. Harchaoui, J. Primot, and K. Heggarty, "Generation of achromatic and propagation invariant spot arrays by us of continuous self-imaging gratings," Opt. Lett. 26, 411-413 (2001). [CrossRef]
  11. J. Courtial, G. Whyte, Z. Bouchal, and J. Wagner, "Iterative algorithm for holographic shaping of non-diffracting and self-imaging light beams," Opt. Express 14, 2108-2116 (2006). [CrossRef] [PubMed]
  12. J. T. Winthrop and C. R. Worthington, "Theory of Fresnel Images. I. Plane Periodic Objects in Monochromatic Light," J. Opt. Soc. Am. 55, 373-381 (1965). [CrossRef]
  13. A. W. Lohmann, "An array illuminator based on the Talbot effect," Optik 79, 41-45 (1988).
  14. V. Arrizon, J. G. Ibarra, and J. Ojeda-Castaneda, "Matrix formulation of the Fresnel transform of complex transmittance gratings," J. Opt. Soc. Am. A 13, 2414-2422 (1996). [CrossRef]
  15. M. Testorf, V. Arrizon, and J. Ojeda-Castaneda, "Numerical optimization of phase-only elements based on the fractional Talbot effect," J. Opt. Soc. Am. A 16, 97-105 (1999). [CrossRef]
  16. K. Patorski, "The self-imaging phenomenon and its applications," in Progress in Optics, E.Wolf, ed., vol. XXVII, pp. 2-108 (Elsevier, Amsterdam, 1989).
  17. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, chap. 10.9, pp. 444-455, 2nd ed. (Cambridge University Press, New York, 1992).
  18. M. S. Kim, M. R. Feldman, and C. C. Guest, "Optimum coding of binary phase-only filters with a simulated annealing algorithm," Opt. Lett. 14, 545-547 (1989). [CrossRef] [PubMed]
  19. V. Arrizon, E. Lopez-Olazagasti, and A. Serrano-Heredia, "Talbot array illuminators with optimum compression ratio," Opt. Lett. 21, 233-235 (1996). [CrossRef] [PubMed]
  20. V. Arrizon and M. Testorf, "Efficieny limit of spatially quantized Fourier array illuminators," Opt. Lett. 22, 197-199 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited