OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 2 — Jan. 23, 2006
  • pp: 527–534

Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating

Kristine M. Rosfjord, Joel K. W. Yang, Eric A. Dauler, Andrew J. Kerman, Vikas Anant, Boris M. Voronov, Gregory N. Gol’tsman, and Karl K. Berggren  »View Author Affiliations


Optics Express, Vol. 14, Issue 2, pp. 527-534 (2006)
http://dx.doi.org/10.1364/OPEX.14.000527


View Full Text Article

Enhanced HTML    Acrobat PDF (323 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have fabricated and tested superconducting single-photon detectors and demonstrated detection efficiencies of 57% at 1550-nm wavelength and 67% at 1064 nm. In addition to the peak detection efficiency, a median detection efficiency of 47.7% was measured over 132 devices at 1550 nm. These measurements were made at 1.8K, with each device biased to 97.5% of its critical current. The high detection efficiencies resulted from the addition of an optical cavity and anti-reflection coating to a nanowire photodetector, creating an integrated nanoelectrophotonic device with enhanced performance relative to the original device. Here, the testing apparatus and the fabrication process are presented. The detection efficiency of devices before and after the addition of optical elements is also reported.

© 2006 Optical Society of America

OCIS Codes
(040.5160) Detectors : Photodetectors
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.3120) Optical devices : Integrated optics devices

ToC Category:
Detectors

Citation
Kristine M. Rosfjord, Joel K. W. Yang, Eric A. Dauler, Andrew J. Kerman, Vikas Anant, Boris M. Voronov, Gregory N. Gol'tsman, and Karl K. Berggren, "Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating," Opt. Express 14, 527-534 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-2-527


Sort:  Journal  |  Reset  

References

  1. G. N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705 (2001). [CrossRef]
  2. J. K. W. Yang, E. Dauler, A. Ferri, A. Pearlman, A. Verevkin, G. Goltsman, B. Voronov, R. Sobolewski, W. E. Keicher, and K. K. Berggren, "Fabrication development for nanowire GHz-counting-rate single-photon detectors," IEEE Trans. Appl. Supercond. 15, 626-630 (2005). [CrossRef]
  3. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol'tsman, and B. Voronov, "Kinetic-inductance-limited reset time of superconducting nanowire photon counters," <a href=http://arxiv.org/abs/physics/0510238>http://arxiv.org/abs/physics/0510238</a>.
  4. D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, "Noise-free high-efficiency photon-number-resolving detectors," Phys. Rev. A 71, 061803(R) (2005). [CrossRef]
  5. I. Milostnaya, A. Korneev, I. Rubtsova, V. Seleznev, O. Minaeva, G. Chulkova, G. Gol'tsam, W. Slysz, M. Wegrzecki, R. Lukasiewicz, J. Bar, M. Gorska, A. Pearlman, J. Kitaygorsky, A. Cross, and R. Sobolewski, "Superconducting single-photon detectors designed for operation at 1.55 µm," presented at 7th European Conference on Applied Superconductivity, Vienna, Austria, 11-15 Sept. 2005.
  6. C. H. Bennett and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," in Proc. IEEE International Conference Computers, Systems and Signal Processing (Institute of Electrical and Electronics Engineers, India, 1984) pp. 175-179.
  7. S. Somani, S. Kasapi, K. Wilsher, W. Lo, R. Sobolewski, and G. Gol'tsman, "New photon detector for device analysis: Superconducting single-photon detector based on a hot electron effect," J. Vac. Sci. Tech. B 19, 2766-9 (2001). [CrossRef]
  8. D. M. Boroson, R. S. Bondurant, and J. J. Scozzafava, "Overview of high rate deep space laser communications options," in Free-Space Laser Communication Technologies XVI, G. S. Mecherle, C. Y. Young, and J. S. Stryjewski, eds., Proc. SPIE 5338, 37-49 (2004). [CrossRef]
  9. J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G. N. Goltsman, and R. Sobolewski, "Response time characterization of NbN superconducting single-photon detectors," IEEE Trans. Appl. Supercond. 13, 180-183 (2003). [CrossRef]
  10. J. Kitaygorsky, J. Zhang, A. Verevkin, A. Sergeev, A. Korneev, V. Matvienko, P. Kouminov, K. Smirnov, B. Voronov, G. Goltsman, and R. Sobolewski, "Origin of dark counts in nanostructured NbN single-photon detectors," IEEE Trans. Appl. Supercond. 15, 545-548 (2005). [CrossRef]
  11. B. S. Robinson, A. J. Kerman, E. A. Dauler, R. J. Barron, D. O. Caplan, M. L. Stevens, J. J. Carney, S. A. Hamilton, J. K. W. Yang and K. K. Berggren, "781-Mbit/s photon-counting optical communications using a superconducting nanowire detector," Opt. Lett. (In press)
  12. A. Korneev, V. Matvienko, O. Minaeva, I. Milostnaya, I. Rubtsova, G. Chulkova, K. Smirnov, V. Voronov, G. Goltsman, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared," IEEE Trans. Appl. Supercond. 15, 571-574 (2005). [CrossRef]
  13. M. A. Albota and E. Dauler, "Single photon detection of degenerate photon pairs at 1.55 µm from a periodically poled lithium niobate parametric downconverter," J. Mod. Opt. 51, 1417-1432 (2004).
  14. Measurement made by J. A. Woollam Co., Inc.
  15. Mitsubishi Rayon America Inc. (2004), aquaSAVE Datasheet, [Online] Available: <a href= http://www.mrany.com>http://www.mrany.com</a>.
  16. Handbook of optical constants of solids, edited by Edward D. Palik, Academic Press, (1985).
  17. Handbook of optical constants of solids III, edited by Edward D. Palik, Academic Press, (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited