OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 2 — Jan. 23, 2006
  • pp: 887–892

Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques

Yuankun Lin, David Rivera, and K. P. Chen  »View Author Affiliations

Optics Express, Vol. 14, Issue 2, pp. 887-892 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (311 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper simulates the photonic band structure in face-centered-orthorhombic and face-centered-tetragonal woodpile-type photonic crystals and shows the fabrication feasibility of these crystals with phase mask based holographic lithography. The experimental demonstration on SU-8 photoresist indicates that a single optical element can replace a complex optical setup for the holographic fabrication of woodpile-type photonic crystals. Photonic band gap calculation predicts the existence of full band gap in these crystals. Optimum band gap sizes are studied for crystals formed under various experimental conditions.

© 2006 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.3160) Physical optics : Interference

ToC Category:
Photonic Crystals

Yuankun Lin, David Rivera, and K. P. Chen, "Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques," Opt. Express 14, 887-892 (2006)

Sort:  Journal  |  Reset  


  1. J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Photonics crystals: putting a new twist on light," Nature (London) 386, 143-147 (1997). [CrossRef]
  2. V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic band gaps and holography," J. Appl. Phys. 82, 60-64 (1997). [CrossRef]
  3. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature (London) 404, 53-56 (2000). [CrossRef] [PubMed]
  4. O. Toader, T. Y. M. Chan, and S. John, "Photonic band gap architectures for holographic lithography," Phys. Rev. Lett. 92, 043905/1-4 (2004). [CrossRef]
  5. Y. M. Chan, O. Toader, and S. John, "Photonic band gap templating using optical interference lithography," Phys. Rev. E 71, 046605/1-18 (2005). [CrossRef]
  6. D. N. Sharp, A. J. Turberfield, and R. G. Denning, "Holographic photonic crystals with diamond symmetry," Phys. Rev. B 68, 205102-6 (2003). [CrossRef]
  7. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu , and C. H. Lin, "Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique," Opt. Express 13, 9605-9611 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-23-9605.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-23-9605</a> [CrossRef] [PubMed]
  8. S. Shoji, H. Sun, and S. Kawata, "Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference," Appl. Phys. Lett. 83, 608-710 (2003). [CrossRef]
  9. I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, "Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography," Appl. Phys. Lett. 82, 1667-1669 (2003). [CrossRef]
  10. Cheng Lu, X. K. Hu, I. V. Mitchell, and R. H. Lipson, "Diffraction element assisted lithography: Pattern control for photonic crystal fabrication," Appl. Phys. Lett. 86, 193110/1-3 (2005). [CrossRef]
  11. Y. Lin, P. R. Herman, and E. L. Abolghasemi, "Proposed single-exposure holographic fabrication of microsphere-type photonic crystal through phase mask techniques," J. Appl. Phys. 97, 096102/1-3 (2005). [CrossRef]
  12. M. J. Escuti, J. Qi, and G. P. Crawford, "Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals," Opt. Lett. 28 (7), 522-524 (2003). [CrossRef] [PubMed]
  13. Y. K. Pang, J. C. Wai Lee, H. F. Lee, W. Y. Tam, C. T. Chan, and P. Sheng, "Chiral microstructures (spirals) fabrication by holographic lithography," Opt. Express 13, 7615-7620 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7615.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7615</a> [CrossRef] [PubMed]
  14. H. Miguez, N. Tetreault, B. Hatton, S. M.Yang, D. Perovic, G. A. Ozin, "Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-by-layer growth of oxide," Chem. Commun. (Cambridge) 22, 2736-2737 (2002). [CrossRef]
  15. N. Tereault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Mater. in press (2005).
  16. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173.</a> [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited