OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 21 — Oct. 16, 2006
  • pp: 9576–9583

Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells

R. Thapa, K. Knabe, K. L. Corwin, and B. R. Washburn  »View Author Affiliations

Optics Express, Vol. 14, Issue 21, pp. 9576-9583 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (152 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The difficulty of fusion splicing hollow-core photonic bandgap fiber (PBGF) to conventional step index single mode fiber (SMF) has severely limited the implementation of PBGFs. To make PBGFs more functional we have developed a method for splicing a hollow-core PBGF to a SMF using a commercial arc splicer. A repeatable, robust, low-loss splice between the PBGF and SMF is demonstrated. By filling one end of the PBGF spliced to SMF with acetylene gas and performing saturation spectroscopy, we determine that this splice is useful for a PBGF cell.

© 2006 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(230.3990) Optical devices : Micro-optical devices
(300.1030) Spectroscopy : Absorption

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 9, 2006
Revised Manuscript: October 4, 2006
Manuscript Accepted: October 4, 2006
Published: October 16, 2006

Virtual Issues
Vol. 1, Iss. 11 Virtual Journal for Biomedical Optics

R. Thapa, K. Knabe, K. L. Corwin, and B. R. Washburn, "Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells," Opt. Express 14, 9576-9583 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Benabid, P. S. Light, F. Couny, and P. S. J. Russell, "Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF," Opt. Express 13, 5694-5703 (2005). [CrossRef] [PubMed]
  2. S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic band-gap fibers," Phys. Rev. Lett. 94, 093902-1 (2005). [CrossRef]
  3. J. Henningsen, J. Hald, and J. C. Peterson, "Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers," Opt. Express 13, 10475-10482 (2005). [CrossRef] [PubMed]
  4. R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, "Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber," Opt. Lett. 31, 2489-2491 (2006). [CrossRef] [PubMed]
  5. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and J. C. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004). [CrossRef] [PubMed]
  6. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005). [CrossRef] [PubMed]
  7. T. Ritari, G. Genty, and H. Ludvigsen, "Supercontinuum and gas cell in a single microstructured fiber cell," Opt. Lett. 30, 3380-3382 (2005). [CrossRef]
  8. A. Yablon, Optical fiber fusion splicing (Springer, Heidelberg, 2005).
  9. P. S. Light, F. Couny, and F. Benabid, "Low optical insertion-loss and vacuum-pressure all-fiber acetylene cell based on hollow core PCF," Opt. Lett. 31, 2538-2540 (2006). [CrossRef] [PubMed]
  10. P. J. Bennett, T. M. Monro, and D. J. Richardson, "Toward practical holey fiber technology: fabrication, splicing, modeling, and characterization," Opt. Lett. 24, 1203-1205 (1999). [CrossRef]
  11. B. Bourliaguet, C. Paré, F. Émond, A. Croteau, A. Proulx, and R. Vallée, "Microstructured fiber splicing," Opt. Express 11, 3412-3417 (2003). [PubMed]
  12. Crystal Fibre A/S, http://www.crystal-fibre.com/support/faq.shtm.
  13. L. Xiao, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Express 13, 9014-9022 (2005). [CrossRef] [PubMed]
  14. CorningS MF-28e optical fiber product information, http://www.corning.com/opticalfiber/.
  15. Crystal Fibre A/S HC19-1550-01 product information, http://www.crystal-fibre.com.
  16. Crystal Fibre A/S HC-1550-02 product information, http://www.crystal-fibre.com.
  17. J. H. Chong and M. K. Rao, "Development of a system for laser splicing photonic crystal fiber," Opt. Express 11, 1365-1370 (2003). [CrossRef] [PubMed]
  18. D. Gloge, "Weakly guiding fibers," Appl. Opt. 10, 2252-8 (1971). [PubMed]
  19. C. R. Pollack, Fundamentals of Optoelectronics (Irwin, Chicago, 1995), Chap. 11.
  20. G.-i. Kweon and I.-S. Park, "Splicing losses between dissimilar optical waveguides," J. of Lightwave Technol. 17, 690-703 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited