OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 22 — Oct. 30, 2006
  • pp: 10377–10385

Susceptibility to and correction of azimuthal aberrations in singular light beams

B.R. Boruah and M.A.A. Neil  »View Author Affiliations


Optics Express, Vol. 14, Issue 22, pp. 10377-10385 (2006)
http://dx.doi.org/10.1364/OE.14.010377


View Full Text Article

Enhanced HTML    Acrobat PDF (667 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show how the effects of azimuthal optical aberrations on singular light beams can result in an intensity modulation in the beam waist or focal point spread function (PSF) that is directly proportional to the amplitude of the applied phase aberration. The resulting distortions are enough to significantly degrade the utility of the singular beams even in well corrected optical systems. However we show that pattern of these intensity modulations is related to the azimuthal order of the applied aberration and we suggest how this can be used to measure those aberrations. We demonstrate a closed loop system using a liquid crystal spatial light modulator as a programmable diffractive optical element to both generate the beam and correct for the sensed aberrations based on feed back from a CCD detected intensity image of the focal point spread function.

© 2006 Optical Society of America

OCIS Codes
(090.1000) Holography : Aberration compensation
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Holography

History
Original Manuscript: July 17, 2006
Revised Manuscript: September 11, 2006
Manuscript Accepted: September 15, 2006
Published: October 30, 2006

Citation
Bosanta R. Boruah and Mark A. Neil, "Susceptibility to and correction of azimuthal aberrations in singular light beams," Opt. Express 14, 10377-10385 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-22-10377


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Allen, M. W. Beijersbergen, and R. J. C. Spreeuw and J. P. Woerdman, "Orbital angular momentum of light and transformation of Laguerre-Gaussian laser modes," Phys. Rev. A 45, 8185-8189 (1992). [CrossRef] [PubMed]
  2. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity," Phys. Rev. Lett. 75, 826-829 (1995). [CrossRef] [PubMed]
  3. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pasko, S. M. Barnett, and S. Franke-Arnold, "Free-space information transfer using light beams carrying orbital angular momentum," Opt. Express 12, 5448-5456 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-22-5448 [CrossRef] [PubMed]
  4. J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, "Measuring the orbital angular momentum of a single photon," Phys. Rev. Lett. 88, 257901 (2002). [CrossRef] [PubMed]
  5. J. E. Curtis and D. G. Grier "Structure of Optical Vortices," Phys. Rev. Lett. 90, 133901 (2004). [CrossRef]
  6. F. K. Fatemi and M. Bashkansky, "Cold atom guidance using a binary spatial light modulator," Opt. Express 14, 1368-1375 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-4-1368 [CrossRef] [PubMed]
  7. T. A. Klar, E. Engel, and S. Hell, "Breaking Abbes diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes," Phys. Rev. E 64, 066613 (2001). [CrossRef]
  8. K.I. Willig, S.O. Rizzoli, V. Westphal, R. Jahn, and S.W. Hell, "STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis," Nature (London) 440, 935-939 (2006). [CrossRef]
  9. C. Paterson, "Atmospheric turbulence and orbital angular momentum of single photons for optical communication," Phys. Rev. Lett. 88, 153901 (2005). [CrossRef]
  10. V. N. Mahajan,"Zernike circle polynomials and optical aberrations of systems with circular pupils," Appl. Opt. 33, 8121-8124 (1994). [CrossRef] [PubMed]
  11. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th ed. Cambridge, England: Cambridge University Press, 1999). [PubMed]
  12. C. Tamm and C. O. Weiss, "Bistability and optical switching of spatial patterns in a laser," J. Opt. Soc. Am. B 7, 1034-1038 (1990). [CrossRef]
  13. M. W. Beijersbergen, L. Allen, H. E. L. O. Vanderveen, and J. P. Woerdman, "Astigmatic laser mode converters and transfer of orbital angular-momentum, " Opt. Commun. 96, 123-132 (1993) [CrossRef]
  14. M. A. A. Neil, M. J. Booth, and T. Wilson, "New modal wave-front sensor: a theoretical analysis," J. Opt. Soc. Am. A 17, 1098-1107 (2000). [CrossRef]
  15. M. A. A. Neil, M. J. Booth, and T. Wilson, "Dynamic wave-front generation for the characterization and testing of optical systems," Opt. Lett. 23, 1849- 1851(1998). [CrossRef]
  16. M. A. A. Neil, T. Wilson and R. Juskaitis, "A wavefront generator for complex pupil function synthesis and point spread function engineering," J. Microsc. 197, 219-223 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: GIF (83 KB)     
» Media 2: GIF (290 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited