OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 25 — Dec. 11, 2006
  • pp: 12271–12287

Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics.

Bruno Montcel, Renée Chabrier, and Patrick Poulet  »View Author Affiliations


Optics Express, Vol. 14, Issue 25, pp. 12271-12287 (2006)
http://dx.doi.org/10.1364/OE.14.012271


View Full Text Article

Enhanced HTML    Acrobat PDF (613 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Time-resolved diffuse optical methods have been applied to detect hemodynamic changes induced by cerebral activity. We describe a near infrared spectroscopic (NIRS) reconstruction free method which allows retrieving depth-related information on absorption variations. Variations in the absorption coefficient of tissues have been computed over the duration of the whole experiment, but also over each temporal step of the time-resolved optical signal, using the microscopic Beer-Lambert law. Finite element simulations show that time-resolved computation of the absorption difference as a function of the propagation time of detected photons is sensitive to the depth profile of optical absorption variations. Differences in deoxyhemoglobin and oxyhemoglobin concentrations can also be calculated from multi-wavelength measurements. Experimental validations of the simulated results have been obtained for resin phantoms. They confirm that time-resolved computation of the absorption differences exhibited completely different behaviours, depending on whether these variations occurred deeply or superficially. The hemodynamic response to a short finger tapping stimulus was measured over the motor cortex and compared to experiments involving Valsalva manoeuvres. Functional maps were also calculated for the hemodynamic response induced by finger tapping movements.

© 2006 Optical Society of America

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.6920) Medical optics and biotechnology : Time-resolved imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: July 18, 2006
Revised Manuscript: September 15, 2006
Manuscript Accepted: October 9, 2006
Published: December 11, 2006

Virtual Issues
Vol. 2, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Bruno Montcel, Renée Chabrier, and Patrick Poulet, "Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics.," Opt. Express 14, 12271-12287 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-25-12271


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Chance, Z. Zhuang, C. Unah, C. Alter and L. Lipton, "Cognition-activated low-frequency modulation of light absorption in human brain," Proc. Natl. Acad. Sci. USA 90, 3770-3774 (1993). [CrossRef] [PubMed]
  2. A. Villringer and B. Chance, "Non-invasive optical spectroscopy and imaging of human brain function," Trends in Neurosciences 20,435-442 (1997). [CrossRef] [PubMed]
  3. D. T. Delpy, M. Cope, P. Van der Zee, S. Arridge, S. Wray and J. Wyatt, "Estimation of optical pathlength through tissue from direct time of flight measurement," Phys. Med. Biol. 33, 1433-1442 (1988). [CrossRef] [PubMed]
  4. J. P. Culver, A. M. Siegel, J. J. Stott and D. A. Boas, "Volumetric diffuse optical tomography of brain activity," Opt. Lett. 28, 2061-2063 (2003). [CrossRef] [PubMed]
  5. A.Y. Bluestone, M. Stewart, J. Lasker, G. S. Abdoulaev and A. H. Hielscher, "Three-dimensional optical tomographic brain imaging in small animals, part 1: hypercapnia," J. Biomed. Opt. 9, 1046-1062 (2004). [CrossRef] [PubMed]
  6. J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49,1117-1130 (2004). [CrossRef] [PubMed]
  7. B. W. Pogue, T. O. McBride, O. L. Osterberg and K. D. Paulsen, "Comparison of imaging geometries for diffuse optical tomography of tissue," Opt. Express 4,270-286 (1999). [CrossRef] [PubMed]
  8. C. H. Schmitz, H. L. Graber, Y. L. Pei, M. Farber, M. Stewart, R. D. Levina, M. B. Levin, Y. Xu and R. L. Barbour, "Dynamic studies of small animals with a four-color diffuse optical tomography imager," Rev. Sci. Instrum. 76,094302 (2005). [CrossRef]
  9. H. Koizumi, T. Yamamoto, A. Maki, Y. Yamashita, H. Sato, H. Kawaguchi and N. Ichikawa, "Optical topography: practical problems and new applications," Appl. Opt. 42,3054-3062 (2003). [CrossRef] [PubMed]
  10. Y. Hoshi, "Functional near-infrared optical imaging: Utility and limitations in human brain mapping," Psychophysiology 40,511-520 (2003). [CrossRef] [PubMed]
  11. S. Del Bianco, F. Martelli and G. Zaccanti, "Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation," Phys. Med. Biol. 47,4131-4144 (2002). [CrossRef] [PubMed]
  12. J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen and D. A. Boas, "Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation," J. Biomed. Opt. 10,011013 (2005). [CrossRef]
  13. B. Montcel, R. Chabrier and P. Poulet, "Detection of cortical activation with time-resolved diffuse optical methods," Appl. Opt. 44, 1942-1947 (2005). [CrossRef] [PubMed]
  14. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer and H. Rinneberg, "Determining changes in NIR absorption using a layered model of the human head," Phys. Med. Biol. 46, 879-896 (2001). [CrossRef] [PubMed]
  15. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Möller, R. Macdonald, A. Villringer and H. Rinneberg, "Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons," Appl. Opt. 43, 3037-3047 (2004). [CrossRef] [PubMed]
  16. Y. Nomura, O. Hazeki and M. Tamura, "Exponential attenuation of light along nonlinear path through the biological model," Adv. Exp. Med. Biol. 248, 77-80 (1989). [CrossRef] [PubMed]
  17. M. Oda, Y. Yamashita, G. Nishimura and M. Tamura, "A simple and novel algorithm for time resolved multiwavelength oximetry," Phys. Med. Biol. 41,551-562 (1996). [CrossRef] [PubMed]
  18. Y. Tsuchiya, "Photon path distribution and optical responses of turbid media: theoretical analysis based on the microscopic Beer-Lambert law," Phys. Med. Biol. 46, 2067-2084 (2001). [CrossRef] [PubMed]
  19. Y. Nomura, O. Hazeki and M. Tamura, "Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media," Phys. Med. Biol. 42,1009-1022 (1997). [CrossRef] [PubMed]
  20. F. P. Bolin, L. E. Preuss, C. Taylor and R. J. Ference, "Refractive index of some mammalian tissues using a fiber optic cladding method," Appl. Opt. 28, 2297-2303 (1989). [CrossRef] [PubMed]
  21. M. S. Patterson, B. Chance and B. C. Wilson, "Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989). [CrossRef] [PubMed]
  22. S. R. Arridge, "Photon-measurement density functions Part I: Analytical forms," Appl. Opt. 34, 7395-7409 (1995). [CrossRef] [PubMed]
  23. Y. Fukui, Y. Ajichi and E. Okada "Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models," Appl. Opt. 42, 2881-2887 (2003). [CrossRef] [PubMed]
  24. P. Poulet, C. V. Zint, M. Torregrossa, W. Uhring and B. Cunin, "Comparison of two time-resolved detectors for diffuse optical tomography: photomultiplier tube-time-correlated single photon counting and multichannel streak camera," in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura and E. M. Sevick-Muraca, eds., Proc. SPIE 4955, 154-163 (2003). [CrossRef]
  25. L. A. Henderson, P. M. Macey, K. E. Macey, R. C. Frysinger, M. A. Woo, R. K. Harper, J. R. Alger, F. L. Yan-Go and R. M. Harper, "Brain responses associated with the Valsalva maneuver revealed by functional magnetic resonance imaging," J Neurophysiol. 88, 3477-3486 (2002). [CrossRef] [PubMed]
  26. J. Mobley and T. Vo-Dinh, "Optical properties of tissue," in Biomedical Photonics Handbook, T. Vo-Dinh ed. (CRC Press, Boca Raton, Fla., 2003).
  27. A. P. Gibson, T. Austin, N. L. Everdell, M. Schweiger, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, "Three-dimensional whole-head optical tomography of passive motor evoked responses in the neonate," Neuroimage 30, 521-528 (2006). [CrossRef]
  28. D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, R. Cubeddu, "Multi-channel time-resolved system for functional near infrared spectroscopy," Opt. Express 14, 5418-5432 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited