OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 3 — Feb. 6, 2006
  • pp: 1266–1279

3+1 dimensional integrated optics with localized light in a photonic band gap

Alongkarn Chutinan and Sajeev John  »View Author Affiliations

Optics Express, Vol. 14, Issue 3, pp. 1266-1279 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (764 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A general design for high-bandwidth, single-mode, lossless, optical micro-circuitry with fully three-dimensional circuit paths is demonstrated. Our 3D circuit design consists of dense stacking several planar microchip layers into the 2D-3D photonic band gap heterostructures and linking them with vertical interconnects. The 3D microchip enables an extra “dimension” of up to 200 nanometer single-mode wave-guiding in each planar chip layer and 100 nanometer bandwidth chip-to-chip interconnects in a variety of 3D PBG materials, including woodpile, slanted pores, and square spiral 3D PBG materials.

© 2006 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides

ToC Category:

Original Manuscript: December 5, 2005
Revised Manuscript: January 20, 2006
Manuscript Accepted: January 23, 2006
Published: February 6, 2006

Alongkarn Chutinan and Sajeev John, "3 + 1 dimensional integrated optics with localized light in a photonic band gap," Opt. Express 14, 1266-1279 (2006)

Sort:  Journal  |  Reset  


  1. S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53, 2169–2172 (1984). [CrossRef]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486– 2489 (1987). [CrossRef] [PubMed]
  3. D. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–671 (1997). [CrossRef]
  4. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  5. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386, 143–149 (1997). [CrossRef]
  6. C. M. Soukoulis, ed., Photonic Crystals and Light Localization in the 21st Century (Kluwer Academic, Dordrecht, 2001).
  7. P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in Photonic Crystals: mode symmetry, tunability and coupling efficiency,” Phys. Rev. B 54, 7837-8942 (1996). [CrossRef]
  8. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996). [CrossRef] [PubMed]
  9. A. Chutinan and S. Noda, “Highly confined waveguides and waveguide bends in three-dimensional photonic crystal,” Appl. Phys. Lett. 75, 3739–3741 (1999). [CrossRef]
  10. M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, D. Turner, B. Vasiliu, S. C. Kothari, and S. Lin, “Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials,” Microwave Opt. Technol. Lett. 23, 56–59 (1999). [CrossRef]
  11. M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B 64, 075313 (2001). [CrossRef]
  12. D. Roundy, E. Lidorikis, and J. D. Joannopoulos, “Polarization-selective waveguide bends in a photonic crystal structure with layered square symmetry,” J. Appl. Phys. 96, 7750–7752 (2004). [CrossRef]
  13. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960–963 (1998). [CrossRef]
  14. M. Florescu and S. John, “Resonance fluorescence in photonic band gap waveguide architectures: engineering the vacuum for all-optical switching,” Phys. Rev. A 69, 053810 (2004). [CrossRef]
  15. Z. Y. Li and K. M. Ho, “Waveguides in three-dimensional layer-by-layer photonic crystals,” J. Opt. Soc. Am. B 20, 801–809 (2003). [CrossRef]
  16. C. Sell, C. Christensen, J. Muehlmeier, G. Tuttle, Z. Y. Li and K. M. Ho, “Waveguide networks in three dimensional layer-by-layer photonic crystals,” Appl. Phys. Lett. 84, 4605–4607 (2004). [CrossRef]
  17. A. Chutinan and S. John, “Light localization for broadband integrated optics in three dimensions,” Phys. Rev. B 72, 161316(R) (2005). [CrossRef]
  18. A. Chutinan, S. John, and O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003). [CrossRef] [PubMed]
  19. A. Chutinan and S. John, “Diffractionless flow of light in two and three-dimensional photonic band gap heterostructures: theory, design rules, and simulations,” Phys. Rev. E 71, 026605 (2005). [CrossRef]
  20. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimension: New layer- by- layer periodic structures,” Solid State Comm. 89, 413 (1994). [CrossRef]
  21. O. Toader, M. Berciu, and S. John, “Photonic band gaps based on tetragonal lattices of slanted pores,” Phys. Rev. Lett. 90, 233901 (2003). [CrossRef] [PubMed]
  22. O. Toader and S. John, “Slanted-pore photonic band-gap materials,” Phys. Rev. E 71, 036605 (2005). [CrossRef]
  23. R. Hillebrand, S. Senz,W. Hergert, and U. Gösele, “Macroporous-silicon-based three-dimensional photonic crystal with a large complete band gap,” J. Appl. Phys. 94, 2758–2760 (2003). [CrossRef]
  24. O. Toader and S. John, “Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals,” Science 292, 1133–1135 (2001). [CrossRef] [PubMed]
  25. O. Toader and S. John, “Square spiral photonic crystals: Robust architecture for microfabrication of materials with large three-dimensional photonic band gaps,” Phys. Rev. E 66, 016610 (2002). [CrossRef]
  26. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Photonic gaps for electromagnetic waves in periodic dielectric structures: Discovery of the diamond structure,” in Photonic Band Gaps and Localization, C. M. Soukoulis, ed., (Plenum, New York, 1993).
  27. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). [CrossRef]
  28. G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans Electromagn. Compat. EMC-23, 377–382 (1981). [CrossRef]
  29. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, Orlando, FL, 1985).
  30. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991). [CrossRef] [PubMed]
  31. Strictly speaking, the two bands can be represented by two bases polarized in any two orthogonal directions in the x-y plane since they are doubly degenerate. However, it is more convenient to consider them as polarized along the x- and y- directions, respectively, as in the text.
  32. C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol. 17, 1682–1692 (1999). [CrossRef]
  33. J. Smajic, C. Hafner, and D. Erni, “Design and optimization of an achromatic photonic crystal bend,” Opt. Express 11, 1378–1384 (2003). <a href= http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1378>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1378</a>. [CrossRef]
  34. N. Moll and G. L. Bona, “Bend design for the low-group-velocity mode in photonic crystal-slab waveguides,” Appl. Phys. Lett. 85, 4322–4324 (2004). [CrossRef]
  35. J. S. Jensen and O. Sigmund, “Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends,” Appl. Phys. Lett. 84, 2022–2024 (2004). [CrossRef]
  36. S. R. Kennedy, M. J. Brett, H. Miguez, O. Toader and S. John, “Optical properties of a three-dimensional silicon square spiral photonic crystal,” Photonics and Nanostruct. –Fundam. and Appl. 1, 37–42 (2003). [CrossRef]
  37. M. O. Jensen and M. J. Brett, “Square spiral 3D photonic bandgap crystals at telecommunications frequencies,” Opt. Express 13, 3348–3354 (2005). <a href= http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-3348>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-3348</a> [CrossRef]
  38. L. L. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mat. 17, 541–545 (2005). [CrossRef]
  39. R. Z. Wang and S. John, “Engineering the electromagnetic vacuum for controlling light with light in a photonicband-gap microchip,” Phys. Rev. A 70, 043805 (2004). [CrossRef]
  40. K. Iizuka, Elements of Photonics (Wiley-Interscience, New York, 2002).
  41. M. Deubel, M. Wegener, A. Kaso, and S. John, “Direct laser writing and characterization of “Slanted Pore” photonic crystals,” Appl. Phys. Lett. 85, 1895–1897 (2004). [CrossRef]
  42. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–447 (2004). [CrossRef] [PubMed]
  43. N. Tétreault, G. von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mat. (in press).
  44. M. Deubel, M.Wegener, S. Linden, G. von Freymann and S. John, “3D-2D-3D photonic crystal heterostructures by direct laser writing,” (submitted to Optics Letters).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited