OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 4 — Feb. 20, 2006
  • pp: 1611–1625

Numerical simulations of long-range plasmons

Aloyse Degiron and David R. Smith  »View Author Affiliations

Optics Express, Vol. 14, Issue 4, pp. 1611-1625 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (375 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present simulations of plasmonic transmission lines consisting of planar metal strips embedded in isotropic dielectric media, with a particular emphasis on the long-range surface plasmon polariton (SPP) modes that can be supported in such structures. Our computational method is based on analyzing the eigenfrequencies corresponding to the wave equation subject to a mixture of periodic, electric and magnetic boundary conditions. We demonstrate the accuracy of our approach through comparisons with previously reported simulations based on the semi-analytical method-of-lines. We apply our method to study a variety of aspects of long-range SPPs, including tradeoffs between mode confinement and propagation distance, the modeling of bent waveguides and the effect of disorder and periodicity on the long-ranging modes.

© 2006 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: December 16, 2005
Revised Manuscript: January 31, 2006
Manuscript Accepted: February 1, 2006
Published: February 20, 2006

Aloyse Degiron and David Smith, "Numerical simulations of long-range plasmons," Opt. Express 14, 1611-1625 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999). [CrossRef]
  2. J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J.-P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64045411 (2001). [CrossRef]
  3. B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F.R. Aussenegg, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51-53 (2001). [CrossRef]
  4. J.-C. Weeber, M.U. González, A.-L. Baudrion, and A. Dereux, "Surface plasmon routing along right angle bent metal strips" Appl. Phys. Lett. 87, 221101, (2005). [CrossRef]
  5. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61,10484-10503 (2000). [CrossRef]
  6. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures," Phys. Rev. B 63, 125417 (2001). [CrossRef]
  7. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, "Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width," Opt. Lett. 52, 844-846 (2000). [CrossRef]
  8. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, "Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons," Opt. Express 13, 977-984 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-3-977. [CrossRef] [PubMed]
  9. S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, "Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides," Opt. Express 13, 4674-4682 (2005)http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-12-4674. [CrossRef] [PubMed]
  10. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, "Characterization of long-range surface-plasmonpolariton waveguides" J. Appl. Phys. 98, 043109 (2005). [CrossRef]
  11. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003). [CrossRef]
  12. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833-5835 (2004). [CrossRef]
  13. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M.S. Larsen, and S.I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons," J. Lightwave Technol. 23, 413-422 (2005). [CrossRef]
  14. A. Boltasseva, S.I. Bozhevolnyi, T. Søndergaard, T. Nikolajsen, and K. Leosson, "Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons" Opt. Express 13, 4237-4243 (2005)http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-11-4237. [CrossRef] [PubMed]
  15. S.J. Al-Bader, "Optical Transmission on Metallic Wires - Fundamental Modes," IEEE J. Quantum Electron. 40, 325-329 (2004). [CrossRef]
  16. Rashid Zia, Anu Chandran, and Mark L. Brongersma, "Dielectric waveguide model for guided surface polaritons," Opt. Lett. 30, 1473-1475 (2005). [CrossRef] [PubMed]
  17. H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).
  18. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824-830 (2003). [CrossRef] [PubMed]
  19. D.M. Pozar, Microwave Engineering (John Wiley & Sons, 1998).
  20. D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981). [CrossRef]
  21. J.J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5286-5301 (1986). [CrossRef]
  22. J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Spectral response of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 213-219 (2000)http://www.opticsinfobase.org/abstract.cfm?URI=oe-6-11-213. [CrossRef] [PubMed]
  23. J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Dramatic localized electromagnetic enhancement in plasmon resonant nanowires," Chem. Phys. Lett. 341, 1-6 (2001). [CrossRef]
  24. P. B. Johnson and R.W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  25. D. Marcuse, "Curvature loss formula for optical fibers," J. Opt. Soc. Am. 66, 216-220 (1976). [CrossRef]
  26. J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994). [CrossRef]
  27. R. Mittra and U. Pekel, "A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves," IEEE Microwave Guid. Wave Lett. 5, 84-86 (1995). [CrossRef]
  28. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997). [CrossRef] [PubMed]
  29. G. A. Farias and A. A. Maradudin, " Effect of surface roughness on the attenuation of surface polaritons on metal films," Phys. Rev. B 27, 7093-7106 (1983). [CrossRef]
  30. W.L. Barnes, T.W. Preist, S.C. Kitson, and J.R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996). [CrossRef]
  31. W.L. Barnes, S.C. Kitson, T.W. Preist, and J.R. Sambles, "Photonic surfaces for surface-plasmon polaritons," J. Opt. Soc. Am. A 14, 1654-1661 (1997). [CrossRef]
  32. P.E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, "Probing the dispersive and spatial properties of photonic crystal waveguides via highly efficient coupling from fiber tapers," Appl. Phys. Lett. 85, 4-6 (2004). [CrossRef]
  33. S.A. Maier, M.D. Friedman, P.E. Barclay, and O. Painter, "Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing," Appl. Phys. Lett. 86, 071103 (2005). [CrossRef]
  34. A. Lai, C. Caloz, and T. Itoh, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine 5, 34-50 (2004). [CrossRef]
  35. R. Islam, F. Elek, and G.V. Eleftheriades, "Coupled-line metamaterial coupler having co-directional phase but contra-directiona power flow," Electron Lett. 40, 315-317 (2004). [CrossRef]
  36. V.G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  37. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  38. M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis "Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A: Pure Appl. Opt. 7, S12-S22 (2005). [CrossRef]
  39. S. O’Brien and J.B. Pendry, "Photonic band-gap effects and magnetic activity in dielectric composites" J. Phys. Condens. Matter 14, 4035-4044 (2002). [CrossRef]
  40. K.C. Huang, M.L. Povinelli, and J.D. Joannopoulos, "Negative effective permeability in polaritonic photonic crystals," Appl. Phys. Lett. 85543-545 (2004). [CrossRef]
  41. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1966).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited