OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 7 — Apr. 3, 2006
  • pp: 2909–2920

Optical response of periodically modulated nanostructures near the interband transition threshold of noble metals

V. Halté, A. Benabbas, and J.-Y. Bigot  »View Author Affiliations

Optics Express, Vol. 14, Issue 7, pp. 2909-2920 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (338 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the influence of the core d-electrons on the spectral optical response of arrays of sub-wavelength holes near the transition from the d-band to the Fermi level of noble metals (d→EF). Our model shows that, due to the dispersion of the metal dielectric function near d→EF, the first order peaks in the enhanced spectral transmission shift nonlinearly as a function of the period of the nanostructure. In addition, we outline in that spectral region an apparent large resonance which does not depend on the geometrical parameters of the nanostructure. It is shown to correspond to the transparency window resulting from the spectral superposition of the large absorption associated to the core d-electrons and high reflectivity due to the conduction electrons. The analysis is performed for gold, copper and silver nanostructures.

© 2006 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Optics at Surfaces

Original Manuscript: March 1, 2006
Revised Manuscript: March 20, 2006
Manuscript Accepted: March 20, 2006
Published: April 3, 2006

V. Halté, A. Benabbas, and J.-Y. Bigot, "Optical response of periodically modulated nanostructures near the interband transition threshold of noble metals," Opt. Express 14, 2909-2920 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998). [CrossRef]
  2. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998). [CrossRef]
  3. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 (1999). [CrossRef]
  4. L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001). [CrossRef] [PubMed]
  5. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001). [CrossRef] [PubMed]
  6. A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate," Appl. Phys. Lett 84, 4661-4663 (2002). [CrossRef]
  7. J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, "Enhanced transmission of THz radiation through subwavelength hole," Phys. Rev. B 68, 201306 (2003). [CrossRef]
  8. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004). [CrossRef] [PubMed]
  9. H. Cao, and A. Nahata, "Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures," Opt. Express 12, 1004-1010 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1004. [CrossRef] [PubMed]
  10. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004). [CrossRef]
  11. J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, "Optical spectroscopy of nanometric holes in thin gold Films," Nano Lett. 4, 1003 (2004). [CrossRef]
  12. I. Avrutsky, Y. Zhao, and V. Kochergin, "Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film," Opt. Lett. 25, 595 (2000). [CrossRef]
  13. A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, "Effects of hole depth on enhanced light transmission through subwavelength hole arrays," Appl. Phys. Lett. 81,4327 (2002). [CrossRef]
  14. M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martin-Moreno, J. Bravo-Abad, F. J. Garcia-Vidal, "Enhanced millimeter-wave transmission through subwavelength hole arrays," Opt. Lett. 29, 2500 (2004). [CrossRef] [PubMed]
  15. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).
  16. J.-Y. Bigot, J.-C. Merle, O. Crégut, and A. Daunois, "Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses," Phys. Rev. Lett. 75, 4702 (1995). [CrossRef] [PubMed]
  17. P. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Menning, M. Schmitt, and H. Schmidt, "Optically induced damping of the surface plasmon resonance in gold colloids," Phys. Rev. Lett. 78, 2192 (1997). [CrossRef]
  18. J. Lermé, B. Palpant, B. Prével, E. Cottancin, M. Pellarin, M. Treilleux, J. L. Vialle, A. Perez, and M. Broyer, "Optical properties of gold metal clusters: A time-dependent local-density-approximation investigation," Eur. Phys. J. D. 4, 95 (1998). [CrossRef]
  19. V. Halté, J. Guille, J.-C. Merle, I. Perakis, and J.-Y. Bigot, "Electron Dynamics in silver nanoparticles: Comparison between thin films and glass embedded nanoparticles," Phys. Rev. B 60, 11738 (1999). [CrossRef]
  20. H. Petek, H. Nagano, and S. Ogawa, "Hot-electron dynamics in copper revisited: The d-band effect," Appl. Phys. B: Lasers Opt. 68, 369 (1999). [CrossRef]
  21. N. del Fatti, C. Flytzanis, and F. Vallée, "Ultrafast induced electron-surface scattering in a confined metallic system," Appl. Phys. B: Lasers Opt. 68, 433 (1999). [CrossRef]
  22. F. Przybilla, A. Degiron, J.-Y. Laluet, C. Genêt and T. W. Ebbesen, "Optical transmission in perforated noble and transition metal films," submitted to J. Opt. A.
  23. J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat.-fys.Medd. 28, 8 (1954).
  24. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and Garcia-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," Opt. Commun 200, 1-7 (2001). [CrossRef]
  25. A.  Benabbas, V.  Halté, and J.-Y.  Bigot, "Analytical model of the optical response of periodically structured metallic films," Opt. Express  13, 8730-8745(2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-22-8730. [CrossRef] [PubMed]
  26. S. A. Damanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study," Phys. Rev. B 67, 035424 (2003); [CrossRef]
  27. S. A. Damanyan, M. Nevière, and A. V. Zayats, "Analytical theory of optical transmission through periodically structured metal films via tunnel-coupled surface polariton modes," Phys. Rev. B 70, 075103 (2004). [CrossRef]
  28. A. M. Dykhne, A. K. Sarychev, and V. M. Shalaev, "Resonant transmittance through metal films with fabricated and light-induced modulation," Phys. Rev. B 67, 195402 (2003). [CrossRef]
  29. A. V. Kats, and A. Yu. Nikitin, "Nonzeroth-Order anomalous optical transparency in modulated metal films owing to excitation of surface plasmon polaritons: an analytic approach," JETP Lett. 79, 625 (2004). [CrossRef]
  30. A. V. Kats and A. Yu. Nikitin, "Analytical treatment of anomalous transparency of a modulated metal film due to surface plasmon-polariton excitation," Phys. Rev. B 70, 235412 (2004). [CrossRef]
  31. E. Popov, M. Nevière, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B 62, 16100-16108 (2000). [CrossRef]
  32. D. W. Lynch and W. R. Hunter, in Handbook of optical constants of solids, E. D. Palik, ed. (Academic Press, New York, 1991).
  33. H. Ehrenreich, and M. H. Cohen, "Self-consistent field approach to the many-electron problem," Phys. Rev. 115, 786 (1959). [CrossRef]
  34. R. Rosei, F. Antonangeli, and U. M. Grassano, "d bands position and width in gold from very low temperature thermomodulation measurements," Surf. Science 37, 689 (1973). [CrossRef]
  35. B. R. Cooper, H. Ehrenreich, and H. R. Philipp, "Optical properties of noble metals. II," Phys. Rev. 138, A494 (1965). [CrossRef]
  36. N. E. Christensen, "The band structure of silver and optical interband transitions," Phys. Stat. Sol. B 54, 551 (1972). [CrossRef]
  37. R. Rosei, "Temperature modulation of the optical transitions involving the Fermi surface in Ag: Theory," Phys. Rev. B 10, 474 (1974). [CrossRef]
  38. R. Rosei, C. H. Culp, and J. H. Weaver, "Temperature modulation of the optical transitions involving the Fermi surface in Ag: Experimental," Phys. Rev. B 10, 484 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited