OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 7 — Apr. 3, 2006
  • pp: 2932–2937

Resonator channel drop filters in a plasmon-polaritons metal

Sanshui Xiao, Liu Liu, and Min Qiu  »View Author Affiliations


Optics Express, Vol. 14, Issue 7, pp. 2932-2937 (2006)
http://dx.doi.org/10.1364/OE.14.002932


View Full Text Article

Enhanced HTML    Acrobat PDF (124 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Channel drop filters with ring/disk resonators in a plasmon-polaritons metal are studied. It shows that light can be efficiently dropped. Results obtained by the finite difference time domain method are consistent with those from the coupled mode theory. It also shows, without considering the loss of the metal, that the quality factor for the channel drop system can be very high. The quality factor decreases significantly if we take into account the loss, which also leads to a weak drop efficiency.

© 2006 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(230.7380) Optical devices : Waveguides, channeled
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 13, 2006
Revised Manuscript: March 16, 2006
Manuscript Accepted: March 16, 2006
Published: April 3, 2006

Citation
Sanshui Xiao, Liu Liu, and Min Qiu, "Resonator channel drop filters in a plasmon-polaritons metal," Opt. Express 14, 2932-2937 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2932


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Haus and Y. Lai, "Theory of cascaded quarter wave shifted distributed feedback resonators," IEEE J. Quantum Electron. 28, 205-213 (1992). [CrossRef]
  2. C. Manolatou, M. J. Khan, S. Fan, P. R. Villenueve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999). [CrossRef]
  3. K. Oda, N. Tokato, and H. Toba, "A wide-FSR waveguide double-ring resonator for optical FDM transmission systems," J. Lightwave Technol. 9, 728-736 (1991). [CrossRef]
  4. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997). [CrossRef]
  5. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998). [CrossRef]
  6. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop filters in photonic crystals," Opt. Express 3, 4-11 (1998). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4. [CrossRef] [PubMed]
  7. M. Qiu and B. Jaskorzynska, "A design of a channel drop filter in a two-dimentional triangular photonic crystal," Appl. Phys. Lett. 83, 1074-1076 (2003). [CrossRef]
  8. S. Kim, J. Cai, J. Jiang, and G. P. Nordin, "New ring resonator configuration using hybrid photonic crystal and conventional waveguide structures," Opt. Express 12, 2356-2364 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2356. [CrossRef] [PubMed]
  9. Z. Zhang and M. Qiu, "Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slabs," Opt. Express 13, 2596-2604 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2596. [CrossRef] [PubMed]
  10. W. Rotman, "A study of single surface corrugated guides," Proc. IRE 39, 952-959 (1951). [CrossRef]
  11. R. A. Hurd, "The propagation of an electromagnetic wave along an infinite corrugated surface," Can. J. Phys. 32, 727-734 (1954). [CrossRef]
  12. R. S. Elliott, "On the theory of corrugated plane surfaces," IRE Trans Antennas Propag- 2 pp. 71-81 (1954).
  13. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimiching surface plasmons with structured surfaces," Science 305, 847-848 (2004). [CrossRef] [PubMed]
  14. J. C. Weeber, A. Dereu, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999). [CrossRef]
  15. R. M. Dickson and L. A. Lyon, "Unidirectional plasmon propagation in metallic nanowires," J. Phys. Chem. B 104, 6095-6098 (2000). [CrossRef]
  16. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998). [CrossRef]
  17. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003). [CrossRef] [PubMed]
  18. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House INC, Norwood, 2000).
  19. S. Xiao, and M. Qiu, "Surface-mode microcavity," Appl. Phys. Lett. 87, 111102 (2005). [CrossRef]
  20. M. Qiu, "Micro-cavities in silicon-on-insulator photonic crystal slabs: Determining resonant frequencies and quality factors accurately," Microwave Opt. Technol. Lett. 45, 381-385 (2005). [CrossRef]
  21. B. E. Little, J. P. Laine, and S. T. Chu, "Surface-roughness-induced contradirectional coupling in ring and disk resonators," Opt. Lett. 22, 4-7 (1997). [CrossRef] [PubMed]
  22. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  23. E. Waks and J. Vuckovic, "Coupled mode theory for photonic crystal cavity-waveguide interaction," Opt. Express 13, 5064-5073 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-5064. [CrossRef]
  24. M. P. Nezhad, K. Tetz, and Y. Fainman, "Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides," Opt. Express 12, 4072-4079 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4072. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited