OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 8 — Apr. 17, 2006
  • pp: 3204–3213

Half-quadratic cost function for computing arbitrary phase shifts and phase: Adaptive out of step phase shifting

Mariano Rivera, Rocky Bizuet, Amalia Martinez, and Juan A. Rayas  »View Author Affiliations


Optics Express, Vol. 14, Issue 8, pp. 3204-3213 (2006)
http://dx.doi.org/10.1364/OE.14.003204


View Full Text Article

Enhanced HTML    Acrobat PDF (288 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a phase shifting robust method for irregular and unknown phase steps. The method is formulated as the minimization of a half-quadratic (robust) regularized cost function for simultaneously computing phase maps and arbitrary phase shifts. The convergence to, at least, a local minimum is guaranteed. The algorithm can be understood as a phase refinement strategy that uses as initial guess a coarsely computed phase and coarsely estimated phase shifts. Such a coarse phase is assumed to be corrupted with artifacts produced by the use of a phase shifting algorithm but with imprecise phase steps. The refinement is achieved by iterating alternated minimization of the cost function for computing the phase map correction, an outliers rejection map and the phase shifts correction, respectively. The method performance is demonstrated by comparison with standard filtering and arbitrary phase steps detecting algorithms.

© 2006 Optical Society of America

OCIS Codes
(100.2650) Image processing : Fringe analysis
(100.3020) Image processing : Image reconstruction-restoration
(100.3190) Image processing : Inverse problems
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement

ToC Category:
Image Processing

History
Original Manuscript: February 22, 2006
Revised Manuscript: April 4, 2006
Manuscript Accepted: April 11, 2006
Published: April 17, 2006

Citation
Mariano Rivera, Rocky Bizuet, Amalia Martinez, and Juan A. Rayas, "Half-quadratic cost function for computing arbitrary phase shifts and phase: Adaptive out of step phase shifting," Opt. Express 14, 3204-3213 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-8-3204


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Guerrero, J. L. Marroquin, M. Rivera, J. A. Quiroga, "Adaptive monogenic filtering and normalization of ESPI fringe patterns," Opt. Lett. 30, 3018-3020 (2005). [CrossRef] [PubMed]
  2. M. Rivera, "Robust phase demodulation of interferograms with open or closed fringes," J. Opt. Soc. Am. A 22, 1170-1175 (2005). [CrossRef]
  3. M. Rivera, J.L. Marroquin, S. Botello and M. Servin, "A robust spatio-temporal quadrature filter for multi-phase stepping," Appl. Opt. 39, 284-292 (2000). [CrossRef]
  4. M. Rivera and J.L. Marroquin, "Half-quadratic cost functions for phase unwrapping," Opt. Lett. 29, 504-506 (2004). [CrossRef] [PubMed]
  5. J.H. Bruning, D.R. Herriot, J.E. Gallagher, D.P. Rosenfeld, A.D. White and D.J. Brangaccio, "Digital wavefront measuring interferometer for testing optical surfaces and lenses," Appl. Opt. 13, 2693-2703 (1974). [CrossRef] [PubMed]
  6. J.E. Grievenkamp, "Generalized data reduction for heterodyne interferometry," Opt. Eng. 23, 350-352 (1984).
  7. J.E. Grievenkamp and J.H. Bruning, "Phase shifting interferometry," in Optical Shop Testing, D. Malacara ed. (John Wiley & Sons, Inc. New York, 1992) pp. 501-598.
  8. C.J. Morgan, "Least squates estimation in phase-measurement interferometry," Opt. Lett. 7368-370 (1982). [CrossRef] [PubMed]
  9. G, Lai and T. Yatagai, "Generalized phase-shifting interferometry," J. Opt. Soc. Am. A 8, 822- (1991) [CrossRef]
  10. C. S. Vikram, W. K. Witherow, and J. D. Trolinger, "Algorithm for phase-difference measurement in phaseshifting interferometry," Appl. Opt. 32, 6250-6252 (1993). [CrossRef] [PubMed]
  11. C. Wei, M. Chen, Z. Wang, "General phase-stepping algorithm with automatic calibration of phase steps," Opt. Eng. 38, 1357-1360 (1999). [CrossRef]
  12. H. van Brug, "Phase-step calibration for phase-stepped interferometry," Appl. Opt. 383549-3555 (1999). [CrossRef]
  13. M. Chen, H. Guo, and C. Wei,"Algorithm immune to tilt phase-shifting error for phase-shifting interferometers," Appl. Opt. 39, 3894-3898 (2000). [CrossRef]
  14. W. Li and X. Su, "Real-time calibration algorithm for phase shifting in phase-measuring profilometry," Opt. Commun. 40, 761-766 (2001).
  15. O. Soloviev and G. Vdovin, "Phase extraction from three and more interferograms registered with different unknown wavefront tilts," Opt. Express 13, 3743-3753 (2005) [CrossRef] [PubMed]
  16. K.A. Goldberg and J. Bokor, "Fourier-transform method of phase-shift determination," Appl. Opt. 402886-1894 (2001) [CrossRef]
  17. K. Larkin, "A self-calibrating phase-shifting algorithm based on the natural demodulation of two-dimensional fringe patterns," Opt. Express 9, 236-253 (2001). [CrossRef] [PubMed]
  18. L. Z. Cai, Q. Liu, and X. L. Yang, "Phase-shift extraction and wave-front reconstruction in phase-shifting interferometry with arbitrary phase steps," Opt. Lett. 28, 1808-1810 (2003). [CrossRef] [PubMed]
  19. A. Patil, B. Raphael and P. Rastogi, "Generalized phase-shifting interferometry by use of a direct stochastic algorithm for global search," Opt. Lett. 29, 1381-1383 (2004). [CrossRef] [PubMed]
  20. A. Patil, R. Langoju, and P. Rastogi, "An integral approach to phase shifting interferometry using a superresolution frequency estimation method," Opt. Express 12, 4681-4697 (2004) [CrossRef] [PubMed]
  21. A. Patil and P. Rastogi, "Nonlinear regression technique applied to generalized phase-shifting interferometry," J. Mod. Opt. 52, 573 - 582 (2005). [CrossRef]
  22. 14 C.J. Tay, C. Quan, L. Chen, "Phase retrieval with a three-frame phase-shifting algorithm with an unknown phase shift," Appl. Opt. 44, 1401-1409 (2005). [CrossRef] [PubMed]
  23. C. Rathjen, Statistical properties of phase-shift algorithms, J. Opt. Soc. Am. A 12, 1997-2008 (1995). [CrossRef]
  24. K. Hibino, B.F. Oreb, D.I. Farrant, and K.G. Larkin, "Phase shifting for nonsinusoidal waveforms with phaseshift errors," J. Opt. Soc. Am. A 12, 761-768 (1995). [CrossRef]
  25. Y. Surrel, "Design of algorithms for phase measurements by the use of phase stepping," Appl. Opt. 35, 51-60 (1996). [CrossRef] [PubMed]
  26. B. Zhao and Y. Surrel, "Effect of quantization error on the computed phase of phase-shifting measurements," Appl. Opt. 36, 2070-2075 (1997). [CrossRef] [PubMed]
  27. K. Okada, A. Sato, and J. Tsujiuchi, "Simultaneous calculation of phase distribution and scanning phase shift in phase shifting interferometry," Opt. Commun. 84, 118-124 (1991). [CrossRef]
  28. J. L. Marroquin, M. Servin and R. Rodriguez-Vera, "Adaptive quadrature filters for multi-phase stepping images," Opt. Lett. 23, 238-240 (1998). [CrossRef]
  29. D. Geman and G. Reynolds, "Constrained restoration and the recovery of discontinuities," IEEE Trans. Image Process. 14, 367-383 (1992).
  30. M.J. Black and A. Rangarajan, "Unification of line process, outlier rejection, and robust statistics with application in early vision," Int. J. Comput. Vis. 19, 57-91 (1996). [CrossRef]
  31. P. Charbonnier, L. Blanc-F´eraud, G. Aubert and M. Barlaud, "Deterministic edge-preserving regularization in computer imaging," IEEE Trans. Image Process. 6, 298-311 (1997). [CrossRef] [PubMed]
  32. M. Rivera and J.L. Marroquin, "Adaptive rest condition potentials: Second order edge-preserving regularization," Comput. Vision Image Understand. 88, 76-93 (2002). [CrossRef]
  33. M. Rivera, and J.L. Marroquin, "Efficient half-quadratic regularization with granularity control," Image and Vision Computing 21, 345—357 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited