OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 8 — Apr. 17, 2006
  • pp: 3225–3237

Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography

R. Huber, M. Wojtkowski, and J. G. Fujimoto  »View Author Affiliations

Optics Express, Vol. 14, Issue 8, pp. 3225-3237 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1242 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a new technique for frequency-swept laser operation--Fourier domain mode locking (FDML)--and its application for swept-source optical coherence tomography (OCT) imaging. FDML is analogous to active laser mode locking for short pulse generation, except that the spectrum rather than the amplitude of the light field is modulated. High-speed, narrowband optical frequency sweeps are generated with a repetition period equal to the fundamental or a harmonic of cavity round-trip time. An FDML laser is constructed using a long fiber ring cavity, a semiconductor optical amplifier, and a tunable fiber Fabry-Perot filter. Effective sweep rates of up to 290 kHz are demonstrated with a 105 nm tuning range at 1300 nm center wavelength. The average output power is 3 mW directly from the laser and 20 mW after post-amplification. Using the FDML laser for swept-source OCT, sensitivities of 108 dB are achieved and dynamic linewidths are narrow enough to enable imaging over a 7 mm depth with only a 7.5 dB decrease in sensitivity. We demonstrate swept-source OCT imaging with acquisition rates of up to 232,000 axial scans per second. This corresponds to 906 frames/second with 256 transverse pixel images, and 3.5 volumes/second with a 256×128×256 voxel element 3-D OCT data set. The FDML laser is ideal for swept-source OCT imaging, thus enabling high imaging speeds and large imaging depths.

© 2006 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(140.3600) Lasers and laser optics : Lasers, tunable

ToC Category:
Imaging Systems

Original Manuscript: January 20, 2006
Revised Manuscript: March 30, 2006
Manuscript Accepted: April 2, 2006
Published: April 17, 2006

Virtual Issues
Vol. 1, Iss. 5 Virtual Journal for Biomedical Optics

R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995). [CrossRef]
  3. F. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, "Wavelength-tuning interferometry of intraocular distances," Appl. Opt. 36, 6548-6553 (1997). [CrossRef]
  4. B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, "Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser," Opt. Lett. 22, 1704-1706 (1997). [CrossRef]
  5. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997). [CrossRef] [PubMed]
  6. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003). [CrossRef] [PubMed]
  7. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003). [CrossRef] [PubMed]
  8. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005). [CrossRef] [PubMed]
  9. M. A. Choma, K. Hsu, and J. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J. Biomed. Opt. 10, 044009 (2005). [CrossRef]
  10. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm," Opt. Express 13, 10523-10538 (2005). [CrossRef] [PubMed]
  11. Y. Yasuno, V. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005). [CrossRef] [PubMed]
  12. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett. 30, 3159-3161 (2005). [CrossRef] [PubMed]
  13. S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, "Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines," P. Combust. Inst. 28, 587-594 (2000). [CrossRef]
  14. J. Wang, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, "Oxygen measurements at high pressures with vertical cavity surface-emitting lasers," Appl. Phys. B 72, 865-872 (2001). [CrossRef]
  15. G. Totschnig, M. Lackner, R. Shau, M. Ortsiefer, J. Rosskopf, M. C. Amann, and F. Winter, "1.8 mu m vertical-cavity surface-emitting laser absorption measurements of HCl, H2O and CH4," Meas. Sci. Technol. 14, 472-478 (2003). [CrossRef]
  16. A. A. Bol'shakov, B. A. Cruden, and S. P. Sharma, "Determination of gas temperature and thermometric species in inductively coupled plasmas by emission and diode laser absorption," Plasma Sci. Technol. 13, 691-700 (2004). [CrossRef]
  17. L. A. Kranendonk, R. J. Bartula, and S. T. Sanders, "Modeless operation of a wavelength-agile laser by high-speed cavity length changes," Opt. Express 13, 1498-1507 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1498. [CrossRef] [PubMed]
  18. W. Eickhoff and R. Ulrich, "Optical frequency-domain reflectometry in single-mode fiber," Appl. Phys. Lett. 39, 693-695 (1981). [CrossRef]
  19. R. Passy, N. Gisin, J. P. Vonderweid, and H. H. Gilgen, "Experimental and theoretical investigations of coherent Ofdr with semiconductor-laser sources," J. Lightwave Technol. 12, 1622-1630 (1994). [CrossRef]
  20. U. Glombitza and E. Brinkmeyer, "Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical wave-guides," J. Lightwave Technol. 11, 1377-1384 (1993). [CrossRef]
  21. H. Barfuss and E. Brinkmeyer, "Modified optical frequency-domain reflectometry with high spatial-resolution for components of integrated optic systems," J. Lightwave Technol. 7, 3-10 (1989). [CrossRef]
  22. M. A. Choma, M. V. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183. [CrossRef] [PubMed]
  23. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  24. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 mu m wavelength," Opt. Express 11, 3598-3604 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-26-3598. [CrossRef] [PubMed]
  25. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2024 KB)     
» Media 2: MOV (1388 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited