OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 8 — Apr. 17, 2006
  • pp: 3541–3546

Design of solid-core microstructured optical fiber with steering-wheel air cladding for optimal evanescent-field sensing

Yinian Zhu, Henry Du, and Ryan Bise  »View Author Affiliations


Optics Express, Vol. 14, Issue 8, pp. 3541-3546 (2006)
http://dx.doi.org/10.1364/OE.14.003541


View Full Text Article

Acrobat PDF (202 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the design of a solid-core microstructured optical fiber with steering-wheel pattern of large holes in cladding as platform for evanescent-field sensing. Both geometry and optical properties of the fiber are numerical computed and analyzed in consideration of manufacturability using sol-gel casting technique as well as by evaluating a triangular lattice of holes with three rings in the design structure so that effective parameters can be established using effective step-index model. We predict less than 0.7 dB/m confinement loss at 850 nm, 29%, 13.7%, and 7.2% of light intensity overlap in air holes at 1500 nm, 1000 nm, and 850 nm wavelength, respectively, in such fiber. With the low loss and high mode-field overlap, the steering-wheel structured fiber is well suited for evanescent-field sensing and detection of chemical and biological species.

© 2006 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2370) Fiber optics and optical communications : Fiber optics sensors

ToC Category:
Photonic Crystal Fibers

History
Original Manuscript: December 21, 2005
Revised Manuscript: March 24, 2006
Manuscript Accepted: March 29, 2006
Published: April 17, 2006

Virtual Issues
Vol. 1, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Yinian Zhu, Henry Du, and Ryan Bise, "Design of solid-core microstructured optical fiber with steering-wheel air cladding for optimal evanescent-field sensing," Opt. Express 14, 3541-3546 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-8-3541


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
  2. P. St. J. Russell, "Photonic crystal fibers," Science 299,358-362 (2003). [CrossRef]
  3. B. J. Eggleton, C. Kerbage, P. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9,698-713 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698.
  4. W. Jin, G. Stewart, and B. Culshaw, "Prospects for fiber-optic evanescent-field gas sensors using absorption in the near-infrared," Sens. Actuators B 38-39,42-47 (1997).
  5. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12,854-858 (2001). [CrossRef]
  6. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, and J. T. Folkenbeg, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004). [CrossRef]
  7. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12,4080-4087 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4080. [CrossRef]
  8. W. N. MacPherson, E. J. Rigg, J. D. C. Jones, V. V. R. K. Kumar, J. C. Knight, and P. St. J. Russell, "Finite-element analysis and experimental results for a microstructured fiber with enhanced hydrostatic pressure sensitivity," J. Lightwave Technol. 23,1227-1231 (2005). [CrossRef]
  9. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fibers: A new class of optical waveguides," Opt. Fiber Technol. 5,305-330 (1999). [CrossRef]
  10. R. Bise and D. J. Trevor, "Sol-gel derived microstructured fiber: fabrication and characterization," Presented at the Optical Fiber Communication Conference & Exposition and the National Fiber Optic Engineers Conference, Anaheim, USA, 6-11 Mar. 2005.
  11. M. N. Petrovich, A. van Brakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, P. Petropoulos, E. O’Driscoll, M. Watson, T. DelMonte, T. M. Monro, J. P. Dakin, and D. J. Richardson, "Microstructured fibers for sensing applications," presented at the Conference of Optics East, Boston, USA, 23-26 Oct. 2005.
  12. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, "Bismuth glass holey fibers with high nonlinearity," Opt. Express 12,5082-5087 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5082. [CrossRef]
  13. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, G. L. Burdge, "Cladding-mode-resonances in air-silica microcstructed optical fibers," J. Lightwave Technol. 18, 1084-1100 (2000). [CrossRef]
  14. M. Koshiba and K. Saitoh, "Structural dependence of effective area and mode field diameter for holey fibers," Opt. Express 11,1746-1756 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-15-1746.
  15. M. Koshiba and K. Saitoh, "Simple evaluation of confinement losses in holey fibers," Opt. Commun. 253,95-98 (2005). [CrossRef]
  16. N. A. Mortensen, "Effective area of photonic crystal fibers," Opt. Express 10,341-348 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-341.
  17. G. W. Schmid-Schonbein, "Biomechanics of microcirculatory blood perfusion," Annu. Rev. Biomed. Eng. 1,73-102 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited