OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 9 — May. 1, 2006
  • pp: 3887–3892

Terahertz photonic crystal switch in silicon based on self-imaging principle

Zhangjian Li, Yao Zhang, and Baojun Li  »View Author Affiliations

Optics Express, Vol. 14, Issue 9, pp. 3887-3892 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (283 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact and high quality terahertz photonic crystal switch is proposed in silicon. The switch operates based on the self-imaging principle in multi-mode photonic crystal waveguide of triangular lattice. The finite-difference time-domain method and the plane wave expansion method are used to verify and analyze the characteristics of the proposed switch. Numerical simulation results agree well with the theoretical expectation. This kind of device is potentially important for terahertz application and might be a new breakthrough to design other kinds of photonic crystal switches.

© 2006 Optical Society of America

OCIS Codes
(130.1750) Integrated optics : Components
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Integrated Optics

Original Manuscript: February 15, 2006
Revised Manuscript: April 25, 2006
Manuscript Accepted: April 25, 2006
Published: May 1, 2006

Zhangjian Li, Yao Zhang, and Baojun Li, "Terahertz photonic crystal switch in silicon based on self-imaging principle," Opt. Express 14, 3887-3892 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. V. Altukhov, E. G. Chirkova, V. P. Sinis, M. S. Kagan, Y. P. Gousev, S. G. Thomas, K. L. Wang, M. A. Odnoblyudov, and I. N. Yassievich, "Towards Si1-xGex quantum-well resonant-state terahertz laser," Appl. Phys. Lett. 79, 3909-3911 (2001). [CrossRef]
  2. R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002). [CrossRef] [PubMed]
  3. P. H. Siegel, "Terahertz technology," IEEE Trans. Microwave Theory Tech. 50, 910-928 (2002). [CrossRef]
  4. H. Kurt and D. S. Citrin, "Photonic crystals for biochemical sensing in the terahertz region," Appl. Phys. Lett. 87, 041108 (2005). [CrossRef]
  5. K. L. Nguyen, M. L. Johns, L. Gladden, C. H. Worrall, P. Alexander, H. E. Beere, M. Pepper, D. A. Ritchie, J. Alton, S. Barbieri, and E. H. Linfield, "Three-dimensional imaging with a terahertz quantum cascade laser," Opt. Express 14, 2123-2129 (2006). [CrossRef] [PubMed]
  6. B. Ferguson, S. Wang, D. Gray, D. Abbot, and X. C. Zhang, "T-ray computed tomography," Opt. Lett. 27, 1312-1314 (2002). [CrossRef]
  7. D. Dragoman and M. Dragoman, "Terahertz fields and applications," Prog. Quantum Electron. 28, 1-66 (2004). [CrossRef]
  8. N. Jukam and M. S. Sherwin, "Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si," Appl. Phys. Lett. 83, 21-23 (2003). [CrossRef]
  9. T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, "Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies," Appl. Phys. Lett. 83, 5362-5364 (2003). [CrossRef]
  10. C. Lin, C. Chen, G. J. Schneider, P. Yao, S. Shi, A. Sharkawy, and D. W. Prather, "Wavelength scale terahertz two-dimensional photonic crystal waveguides," Opt. Express 12, 5723-5728 (2004). [CrossRef] [PubMed]
  11. A. Bingham, Y. Zhao, and D. Grischkowsky, "THz parallel plate photonic waveguides," Appl. Phys. Lett. 87, 051101 (2005). [CrossRef]
  12. Y. Zhang, Z. Li, B. Li, "Multimode interference effect and self-imaging principle in two-dimensional silicon photonic crystal waveguides for terahertz waves," Opt. Express 14, 2679-2689 (2006). [CrossRef] [PubMed]
  13. I. Park, H. S. Lee, H. J. Kim, K. M. Moon, S. G. Lee, B. H. O, S. G. Park, and E. H. Lee, "Photonic crystal power-splitter based on directional coupling," Opt. Express 12, 3599-3604 (2004). [CrossRef] [PubMed]
  14. T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, "Multi-mode interference-based photonic crystal waveguide power splitter," J. Lightwave Technol. 22, 2842-2846 (2004). [CrossRef]
  15. F. Cuesta-Soto, A. Martinez, J. Garcia, F. Ramos, P. Sanchis, J. Blasco, and J. Martí, "All-optical switching structure based on photonic crystal directional coupler," Opt. Express 12, 161-167 (2003). [CrossRef]
  16. A. Locatelli, D. Modotto, D. Paloschi, and C. D. Angelis, "All optical switching in ultrashort photonic crystal couplers," Opt. Commun. 237, 97-102 (2004). [CrossRef]
  17. Z. Li, Z. Chen, and B. Li, "Optical pulse controlled all-optical logic gates in SiGe/Si multi-mode interference," Opt. Express 13, 1033-1038 (2005). [CrossRef] [PubMed]
  18. S. Nagai, G. Morishima, H. Inayoshi, and K. Utaka, "Multi-mode interference photonic switches (MIPS)," J. Lightwave Technol. 20, 675-681 (2002). [CrossRef]
  19. H. J. Kim, I. Park, B. H. O, S. G. Park, E. H. Lee, and S. G. Lee, "Self-imaging phenomena in multi-mode photonic crystal line-defect waveguides: application to wavelength de-multiplexing," Opt. Express 12, 5625-5633 (2004). [CrossRef] [PubMed]
  20. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  21. M. Qu, "Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals," Appl. Phys. Lett. 81, 1163-1165 (2002). [CrossRef]
  22. L. B. Soldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited