OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 9 — May. 1, 2006
  • pp: 3942–3951

Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy

Yan Fu, Haifeng Wang, Riyi Shi, and Ji-Xin Cheng  »View Author Affiliations


Optics Express, Vol. 14, Issue 9, pp. 3942-3951 (2006)
http://dx.doi.org/10.1364/OE.14.003942


View Full Text Article

Enhanced HTML    Acrobat PDF (1288 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a mechanistic analysis of photodamage in coherent anti-Stokes Raman scattering (CARS) microscopy. Photodamage to the myelin sheath in spinal tissues is induced by using the point scan mode and is featured by myelin splitting and shockwaves with broadband emission. Our measurement of photodamage rate versus the excitation power reveals that both linear and nonlinear mechanisms are involved. Moreover, we show that vibrational absorption induced by coherent Raman processes significantly contributes to the nonlinear damage at high peak powers. For CARS imaging of cultured cells, the photodamage is characterized by plasma membrane blebbing and is dominated by a second order mechanism. Our study suggests that for dense samples such as the myelin sheath, CARS imaging induced photodamage can be minimized by using laser beams with relatively long near IR wavelengths and a repetition rate of a few MHz. For less dense samples such as cultured cells, laser pulses of higher repetition rates are preferred.

© 2006 Optical Society of America

OCIS Codes
(180.5810) Microscopy : Scanning microscopy
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(350.1820) Other areas of optics : Damage

ToC Category:
Microscopy

History
Original Manuscript: January 18, 2006
Revised Manuscript: April 17, 2006
Manuscript Accepted: April 21, 2006
Published: May 1, 2006

Virtual Issues
Vol. 1, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Yan Fu, Haifeng Wang, Riyi Shi, and Ji-Xin Cheng, "Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy," Opt. Express 14, 3942-3951 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-9-3942


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Denk, J. H. Strickler, and W. W. Webb, "Two-Photon Laser Scanning Fluorescence Microscopy," Science 248, 73-76 (1990). [CrossRef] [PubMed]
  2. C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, "Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy," Proc. Natl. Acad. Sci. USA 93, 10763-10768 (1996). [CrossRef] [PubMed]
  3. L. Moreaux, O. Sandre, and J. Mertz, "Membrane imaging by second-harmonic generation microscopy," J. Opt. Soc. Am. B 17, 1685-1694 (2000). [CrossRef]
  4. P. J. Campagnola and L. M. Loew, "Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotech. 21, 1356-1360 (2003). [CrossRef]
  5. J. X. Cheng and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004). [CrossRef]
  6. M. D. Duncan, J. Reintjes, and T. J. Manuccia, "Scanning Coherent Anti-Stokes Raman Microscope," Opt. Lett. 7, 350-352 (1982). [CrossRef] [PubMed]
  7. A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999). [CrossRef]
  8. J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity," J. Phys. Chem. B 105, 1277-1280 (2001). [CrossRef]
  9. A. Volkmer, J. X. Cheng, and X. S. Xie, "Vibrational imaging with high sensitivity via epi-detected coherent anti-Stokes Raman scattering microscopy," Phys. Rev. Lett. 87, 023901 (2001). [CrossRef]
  10. G. W. H. Wurpel, J. M. Schins, and M. Müller, "Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 27, 1093-1095 (2002). [CrossRef]
  11. J. X. Cheng, A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B 19,1363-1375 (2002). [CrossRef]
  12. N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418,512-514 (2002). [CrossRef] [PubMed]
  13. C. L. Evans, E. O. Potma, and X. S. Xie, "Coherent anti-Stokes Raman scattering spectral interferometry:determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy," Opt. Lett. 29,2923-2925 (2004). [CrossRef]
  14. K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, "High spectral resolution multiplex CARS spectroscopy using chirped pulses," Chem. Phys. Lett. 387,436-441 (2004). [CrossRef]
  15. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, "Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging," Phys. Rev. Lett. 92,220801 (2004). [CrossRef] [PubMed]
  16. J. S. Bredfeldt, C. Vinegoni, D. L. Marks, and S. A. Boppart, "Molecular sensitivity optical coherence tomography," Opt. Lett. 30,495-497 (2005). [CrossRef] [PubMed]
  17. P. D. Maker and R. W. Terhune, "Study of Optical effects Due to an Induced Polarization Third Order in the Electric Field Strength," Phys. Rev. 137,A801-818 (1965). [CrossRef]
  18. Y. R. Shen, The Principles of Nonlinear Optics (John Wiley and Sons Inc., New York, 1984).
  19. L. Li, H. Wang, and J. X. Cheng, "Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in co-existing domains," Biophys. J. 89,3480-3490 (2005). [CrossRef] [PubMed]
  20. G. W. H. Wurpel, H. A. Rinia, and M. Müller, "Imaging orientational order and lipid density in multilamellar vesicles with multiplex CARS microscopy," J. Microsc. 218,37-45 (2005). [CrossRef] [PubMed]
  21. E. O. Potma and X. S. Xie, "Direct visualization of lipid phase segregation in single lipid bilayers with coherent anti-Stokes Raman scattering microscopy," Chem. Phys. Chem. 6, 77-79 (2005). [CrossRef] [PubMed]
  22. X. Nan, J. X. Cheng, and X. S. Xie, "Vibrational imaging of lipid droplets in live fibroblast cells using coherent anti-Stokes Raman microscopy," J. Lipid Res. 40,2202-2208 (2003). [CrossRef]
  23. C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005). [CrossRef] [PubMed]
  24. J. X. Cheng, S. Pautot, D. A. Weitz, and X. S. Xie, "Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy," Proc. Natl. Acad. Sci. USA 100, 9826-9830 (2003). [CrossRef] [PubMed]
  25. E. O. Potma, W. P. D. Boeij, P. J. M. v. Haastert, and D. A. Wiersma, "Real-time visualization of intracellular hydrodynamics in single living cells," Proc. Natl. Acad. Sci. USA 98,1577-1582 (2001). [CrossRef] [PubMed]
  26. A. P. Kennedy, J. Sutcliffe, and J. X. Cheng, "Molecular composition and orientation of myelin figures characterized by coherent anti-Stokes Raman scattering microscopy," Langmuir 21, 6478-6486 (2005). [CrossRef] [PubMed]
  27. H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, "Coherent anti-Stokes Raman scattering imaging of live spinal tissues," Biophys. J. 89, 581-591 (2005). [CrossRef] [PubMed]
  28. A. Vogel, J. Noack, G. Huettmann, and G. Paltauf, "Femtosecond-laser-produced low-density plasmas in transparent biological media: a tool for the creation of chemical, thermal, and thermomechanical effects below the optical breakdown threshold," Proc. SPIE 4633A,1-15 (2002).
  29. K. König, "Laser tweezers and multiphoton microscopes in life sciences," Histochem. Cell Biol. 114, 79-92 (2000). [PubMed]
  30. A. Hopt and E. Neher, "Highly nonlinear photodamage in two-photon fluorescence microscopy," Biophys. J. 80, 2029-2036 (2001). [CrossRef] [PubMed]
  31. K. König, T. W. Becker, P. Fischer, I. Riemann, and K.-J. Halbhuber, "Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes," Opt. Lett. 24, 113-115 (1999). [CrossRef]
  32. H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, "Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamge," Biophys. J. 77, 2226-2236 (1999). [CrossRef] [PubMed]
  33. J. S. Gomez, "Coherent Raman Spectroscopy," in Modern Techniques in Raman Spectroscopy, J. J. Laserna, editor. (John Wiley & Sons Inc., New York, 1996).
  34. P. Morell and R. H. Quarles, "Myelin formation, structure, and biochemistry," in Basic Neurochemistry: Molecular, Cellular, and Medical Aspects, G. J. Siegel, B. W. Agranoff, R. W. Alberts, and P. B. Molinoff, eds. (Lippincott Williams & Wilkins, Philadelphia, 1999).
  35. P. N. Prasad, Introduction to biophotonics. (Wiley Interscience, Hoboken, NJ, 2003), pp. 168-175.
  36. J. Diels and W. Rudolph, "Generation of extreme wavelengths," in Ultrashort laser pulse phenomena: fundamentals, techniques, and applications on a femtosecond time scale. (Academic Press, San Diego, 1996), pp. 472-475.
  37. H. R. Griem, "Optical radiation," in Plasma physics in theory and application, W. B. Kunkel, editor. (McGraw-Hill, Inc., New York, 1966), pp. 278-280.
  38. K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, "Characterization of photodamage to Escherichia coli in optical traps," Biophys. J. 77, 2856-2863 (1999). [CrossRef] [PubMed]
  39. B. R. Masters, P. T. C. So, C. Buehler, N. Barry, J. D. Sutin, W. W. Mantulin, and E. Gratton, "Mitigating thermal mechanical damage potential during two-photon dermal imaging," J. Biomed. Opt. 9, 1265-1270 (2004). [CrossRef] [PubMed]
  40. Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, "Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry," Biophys. J. 71, 2158-2167 (1996). [CrossRef] [PubMed]
  41. H. Wang, Y. Fu, and J. X. Cheng, "Light-matter energy exchange in coherent Raman microscopy," Phys. Rev. A, submitted (2005).
  42. K. König, H. Liang, M. W. Berns, and B. J. Tromberg, "Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption," Opt. Lett. 21, 1090-1092 (1996). [CrossRef] [PubMed]
  43. M. L. Cunningham, J. S. Johnson, S. M. Giovanazzi, and M. J. Peak, "Photosensitized production of superoxide anion by monochromatic (290-405 nm) ultraviolet irradiation of NADH and NADPH coenzymes," Photochem. Photobiol. 42, 125-128 (1985). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited