OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 9 — May. 1, 2006
  • pp: 4026–4036

Pulse compression using a tapered microstructure optical fiber

Jonathan Hu, Brian S. Marks, Curtis R. Menyuk, Jinchae Kim, Thomas F. Carruthers, Barbara M. Wright, Thierry F. Taunay, and E. Joseph Friebele  »View Author Affiliations

Optics Express, Vol. 14, Issue 9, pp. 4026-4036 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (388 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We calculate the pulse compression in a tapered microstructure optical fiber with four layers of holes. We show that the primary limitation on pulse compression is the loss due to mode leakage. As a fiber’s diameter decreases due to the tapering, so does the air-hole diameter, and at a sufficiently small diameter the guided mode loss becomes unacceptably high. For the four-layer geometry we considered, a compression factor of 10 can be achieved by a pulse with an initial FWHM duration of 3 ps in a tapered fiber that is 28 m long. We find that there is little difference in the pulse compression between a linear taper profile and a Gaussian taper profile. More layers of air-holes allows the pitch to decrease considerably before losses become unacceptable, but only a moderate increase in the degree of pulse compression is obtained.

© 2006 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Nonlinear Optics

Original Manuscript: March 3, 2006
Revised Manuscript: April 12, 2006
Manuscript Accepted: April 18, 2006
Published: May 1, 2006

Jonathan Hu, Brian S. Marks, Curtis R. Menyuk, Jinchae Kim, Thomas F. Carruthers, Barbara M. Wright, Thierry F. Taunay, and E. J. Friebele, "Pulse compression using a tapered microstructure optical fiber," Opt. Express 14, 4026-4036 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. V. Chernikov and P. V. Mamyshev, "Femtosecond soliton propagation in fibers with slowly decreasing dispersion," J. Opt. Soc. Am. B 8, 1633-1641 (1991). [CrossRef]
  2. N. A. Mortensen, "Effective area of photonic crystal fibers," Opt. Express 10, 341-348 (2002). [PubMed]
  3. Y. Youk, D. Y. Kim, K. W. Park, "Guiding properties of a tapered photonic crystal fiber compared with those of a tapered single-mode fiber," Fiber Int. Opt. 23, 439-446 (2004). [CrossRef]
  4. M. Foster, K. Moll, and A. Gaeta, "Optimal waveguide dimensions for nonlinear interactions," Opt. Express 12, 2880-2887 (2004). [CrossRef] [PubMed]
  5. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002). [CrossRef]
  6. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am. B 19, 2331-2340 (2002). [CrossRef]
  7. B. T. Kuhlmey, R. C. McPhedran, C. M. de Sterke, P. A. Robinson, G. Renversez, and D. Maystre, "Microstructured optical fibers: where’s the edge?," Opt. Express 10, 1285-1290 (2002), [PubMed]
  8. H. C. Nguyen, B. T. Kuhlmey, M. J. Steel, C. L. Smith, E. C. M¨agi, R. C. McPhedran, and B. J. Eggleton, "Leakage of the fundamental mode in photonic crystal fiber tapers," Opt. Lett. 30, 1123-1125 (2005). [CrossRef] [PubMed]
  9. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler "Soliton selffrequency shift in a short tapered air-silica microstructure fiber," Opt. Lett. 26, 358-360 (2001). [CrossRef]
  10. J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu and C. Xu "Adiabatic coupling in tapered air-silica microstructured optical fiber," IEEE Photonics Technol. Lett. 13, 52-54 (2001). [CrossRef]
  11. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12, 2864-2869 (2004), [CrossRef] [PubMed]
  12. D. J. Moss, Y. Miao, V. Ta’eed, E. C. M¨agi, and B. J. Eggleton, "Coupling to high-index waveguides via tapered microstructured optical fibre," Electron. Lett. 41, 951-953 (2005). [CrossRef]
  13. G. E. Town and J. T. Lizier, "Tapered holey fibers for spot-size and numerical-aperture conversion," Opt. Lett. 26, 1042-1044 (2001). [CrossRef]
  14. M. A. Foster and A. L. Gaeta, "Ultra-low threshold supercontinuum generation in sub-wavelength waveguides," Opt. Express 12, 3137-3143 (2004). [CrossRef] [PubMed]
  15. M. Foster, A. Gaeta, Q. Cao, and R. Trebino, "Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires," Opt. Express 13, 6848-6855 (2005). [CrossRef] [PubMed]
  16. Y. K. Liz´e, E. C. M¨agi, V. G. Ta’eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, "Microstructured optical fiber photonic wires with subwavelength core diameter," Opt. Express 12, 3209-3217 (2004). [CrossRef] [PubMed]
  17. E. C. M¨agi, P. Steinvurzel, and B. J.  Eggleton, "Transverse characterization of tapered photonic crystal fibers," J. Appl. Phys. 96, 3976-3982 (2004). [CrossRef]
  18. S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, "Soliton pulse compression in dispersiondecreasing fiber," Opt. Lett. 18, 476-478 (1993). [CrossRef] [PubMed]
  19. H. H. Kuehl, "Solitons on an axially nonuniform optical fiber," J. Opt. Soc. Am. B 5, 709-713 (1988). [CrossRef]
  20. J. Lægsgaard, N. A. Mortensen, and A. Bjarklev, "Mode areas and field-energy distribution in honeycomb photonic bandgap fibers," J. Opt. Soc. Am. B 20, 2037-2045 (2003). [CrossRef]
  21. G. P. Agrawal, Nonlinear Fiber Optics, (3rd ed., Academic Press, San Diego, CA, 2001).
  22. A. M. Zheltikov, "The physical limit for the waveguide enhancement of nonlinear-optical processes," Optics and Spectroscopy 95, 410-415 (2003). [CrossRef]
  23. D. Marcuse, "Solution of the vector wave equation for general dielectric waveguides by the Galerkin method," IEEE J. Quantum Electron. 28, 459-465 (1992). [CrossRef]
  24. J. Kim, U.-C. Paek, D. Y. Kim, and Y. Chung, "Analysis of the dispersion properties of holey optical fibers using normalized dispersion," in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, Washington DC, 2001), WDD86-1.
  25. O. V. Sinkin, R. Holzl¨ohner, J. Zweck, and C. R. Menyuk, "Optimization of the Split-Step Fourier Method in Modeling Optical-Fiber Communications Systems," J. Lightwave Technol. 21, 61-68 (2003). [CrossRef]
  26. K. J. Blow, N. J. Doran, and D. Wood, "Generation and stabilization of short soliton pulses in the amplified nonlinear Schrodinger equation," J. Opt. Soc. Am. B 5, 381-391 (1988). [CrossRef]
  27. H. Kubota, K. Suzuki, S. Kawanishi, M. Nakazawa, M. Tanaka, and M. Fujita, "Low-loss, 2 km-long photonics crystal fiber with zero GVD in the near IR suitable for picosecond pulse propagation at the 800 nm band," Conference on Lasers and Electro-Optics, Baltimore, MD, 2001, paper CPD3-1.
  28. M. D. Pelusi and H.-F. Liu, "Higher order soliton pulse compression in dispersion-decreasing optical fibers," IEEE J. Quantum Electron. 33, 1430-1439 (1997). [CrossRef]
  29. A. Mostofi, H. Hatami-Hanza, and P. L. Chu, "Optimum dispersion profile for compression of fundamental solitons in dispersion decreasing fibers," IEEE J. Quantum Electron. 33, 620-628 (1997). [CrossRef]
  30. M. D. Pelusi, Y. Matsui, and A. Suzuki, "Design of short dispersion decreasing fibre for enhanced compression of higher-order soliton pulses around 1550 nm," Electron. Lett. 35, 61-63 (1999). [CrossRef]
  31. T. A. Birks and Y. W. Li, "The shape of fiber tapers," J. Lightwave Technol. 10,432-438, (1992). [CrossRef]
  32. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, in Numerical Recipes in C++, (2nd ed., Cambridge University Press, Cambridge, UK, 2003), Chap. 10.2, pp. 406-410.
  33. E. H. Khoo, A. Q. Liu, and J. H. Wu, "Nonuniform photonic crystal taper for high-efficiency mode coupling," Opt. Express 13, 7748-7759 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: GIF (912 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited