OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 9 — May. 1, 2006
  • pp: 4073–4086

Dispersion tailoring of the quarter-wave Bragg reflection waveguide

Brian R. West and A. S. Helmy  »View Author Affiliations

Optics Express, Vol. 14, Issue 9, pp. 4073-4086 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (250 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present analytical formulae for the polarization dependent first- and second-order dispersion of a quarter-wave Bragg reflection waveguide (QtW-BRW). Using these formulae, we develop several qualitative properties of the QtW-BRW. In particular, we show that the birefringence of these waveguides changes sign at the QtW wavelength. Regimes of total dispersion corresponding to predominantly material-dominated and waveguide-dominated dispersion are identified. Using this concept, it is shown that the QtW-BRW can be designed so as to provide anomalous group velocity dispersion of large magnitude, or very small GVD of either sign, simply by an appropriate chose of layer thicknesses. Implications on nonlinear optical devices in compound semiconductors are discussed.

© 2006 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.1480) Optical devices : Bragg reflectors
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Devices

Original Manuscript: February 27, 2006
Revised Manuscript: April 17, 2006
Manuscript Accepted: April 18, 2006
Published: May 1, 2006

Brian R. West and A. S. Helmy, "Dispersion tailoring of the quarter-wave Bragg reflection waveguide," Opt. Express 14, 4073-4086 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. S. Helmy and B. R. West, "Phase matching using Bragg reflector waveguides," in Proceedings of 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Institute of Electrical and Electronics Engineers, Sydney, 2005), pp. 424-425.
  2. A. S. Helmy, "Phase matching using Bragg reflection waveguides for monolithic nonlinear optics applications," Opt. Express 14, 1243-1252 (2006) [CrossRef] [PubMed]
  3. Y. Sakurai and F. Koyama, "Proposal of tunable hollow waveguide distributed Bragg reflectors," Jpn. J. Appl. Phys. 43,L631-L633 (2004). [CrossRef]
  4. E. Simova and I. Golub, "Polarization splitter/combiner in high index contrast Bragg reflector waveguides," Opt. Express 11, 3425-3430 (2003), [CrossRef] [PubMed]
  5. A. Mizrahi and L. Schächter, "Optical Bragg accelerators," Phys. Rev. E. 70, 016505 (2004). [CrossRef]
  6. S. Nakamura, K. Tajima, "Analysis of subpicosecond full-switching with a symmetric Mach-Zehnder all-optical switch," Jpn. J. Appl. Phys. 35, L1426-L1429 (1996). [CrossRef]
  7. K. Cheng, ed., Handbook of Optical Components and Engineering (Wiley Interscience, 2003).
  8. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1989).
  9. U. Peschel, T. Peschel, and F. Lederer, "A compact device for highly efficient dispersion compensation in fiber transmission," Appl. Phys. Lett. 67, 2111-2113 (1995). [CrossRef]
  10. Y. Lee, A. Takei, T. Taniguchi, and H. Uchiyama, "Temperature tuning of dispersion compensation using semiconductor asymmetric coupled waveguides," J. Appl. Phys. 98, 113102 (2005). [CrossRef]
  11. M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, "Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires," Opt. Express 13, 6848-6855 (2005), [CrossRef] [PubMed]
  12. E. Valentinuzzi, "Dispersive properties of Kerr-like nonlinear optical structures," J. Lightwave Technol. 16, 152-155 (1998). [CrossRef]
  13. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, "Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm," Opt. Express 13, 8452-8459 (2005), [CrossRef] [PubMed]
  14. T. D. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, "Dispersion tailoring and compensation by modal interactions in OmniGuide fibers," Opt. Express 11, 1175-1196 (2003) [CrossRef] [PubMed]
  15. A. Mizrahi and L. Schächter, "Bragg reflection waveguides with a matching layer," Opt. Express 12, 3156-3170 (2004). [CrossRef] [PubMed]
  16. I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar, A. A. Zharov, A. D. Boardman, and P. Egan, "Nonlinear surface waves in left-handed materials," Phys. Rev. E 69, 016617 (2004). [CrossRef]
  17. Y. Sakurai and F. Koyama, "Control of group delay and chromatic dispersion in tunable hollow waveguide with highly reflective mirrors," Jpn. J. Appl. Phys. 43,5828-5831 (2004). [CrossRef]
  18. P. Yeh and A. Yariv, "Bragg reflection waveguides," Opt. Commun. 19, 427-430 (1976). [CrossRef]
  19. P. Yeh, A. Yariv, and C.-S. Hong, "Electromagnetic propagation in periodic stratified media: I. General theory," J. Opt. Soc. Am. 67, 428-438 (1977). [CrossRef]
  20. B. R. West and A. S. Helmy, "Properties of the quarter-wave Bragg reflection waveguide: Theory," J. Opt. Soc. Am. B (to be published).
  21. A. S. Deif, Advanced Matrix Theory for Scientists and Engineers (Routledge, 1987).
  22. S. Adachi, "GaAs, AlAs, and AlxGa1-xAs material parameters for use in research and device applications," J. Appl. Phys. 58, R1-R29 (1985). [CrossRef]
  23. M. A. Afromowitz, "Refractive index of Ga1-xAlxAs," Solid State Commun. 15, 59-63 (1974). [CrossRef]
  24. A. N. Pikhtin and A. D. Yas’kov, "Dispersion of refractive-index of semiconductors with diamond and zincblende structures," Sov. Phys. Semicond. 12, 622-626 (1978).
  25. S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, "The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling," J Appl. Phys. 87, 7825-7837 (2000). [CrossRef]
  26. T. C. Kleckner, A. S. Helmy, K. Zeaiter, D. C. Hutchings, and J. S. Aitchison, "Dispersion and modulation of the linear optical properties of GaAs-AlAs superlattice waveguides using quantum-well intermixing," IEEE J. Quantum Electron. 42, 280-286 (2006). [CrossRef]
  27. B. R. West and A. S. Helmy, "Analysis and design equations for phase matching using Bragg reflector waveguides," IEEE J. Sel. Top. Quantum Electron. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited