OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 9 — May. 1, 2006
  • pp: 4115–4127

Femtosecond electron pulse gating using surface plasmons

S. E. Irvine and A. Y. Elezzabi  »View Author Affiliations

Optics Express, Vol. 14, Issue 9, pp. 4115-4127 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (815 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a theoretical investigation of a novel all-optical method for electron beam gating via ponderomotive surface plasmon (SP) interaction. Using femtosecond optical pulses, large electric field gradient SP waves are launched on the surface of a metal film and selectively gate an external electron beam. It is shown that this method can generate electron pulses having similar durations as the laser pulse. The ultrashort electron packets are highly directional and examination of their spatial distribution reveals a large degree of spatial microbunching. Angle-resolved energy spectra of the electrons reveal that their final velocities are highly correlated with exit angle. Furthermore, it is demonstrated that the SP gating technique can be utilized for temporal characterization of ultrashort electron pulses with durations <100 fs.

© 2006 Optical Society of America

OCIS Codes
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(320.7120) Ultrafast optics : Ultrafast phenomena

ToC Category:
Optics at Surfaces

Original Manuscript: February 27, 2006
Revised Manuscript: April 10, 2006
Manuscript Accepted: April 25, 2006
Published: May 1, 2006

S. E. Irvine and A. Y. Elezzabi, "Femtosecond electron pulse gating using surface plasmons," Opt. Express 14, 4115-4127 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Brabec and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics," Rev. Mod. Phys. 72,545-591 (2000). [CrossRef]
  2. A. Apolonski, P. Dombi, G. G. Paulus, M. Kakehata, R. Holzwarth, T. Udem, C. Lemell, K. Torizuka, J. Burgdorfer, T. W. Hänsch, F. Krausz, "Observation of light-phase-sensitive photoemission from a metal," Phys. Rev. Lett. 92073902 (2004). [CrossRef] [PubMed]
  3. P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, "Highly simplified device for ultrashort-pulse measurement," Opt. Lett. 26, 932-934 (2001). [CrossRef]
  4. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 683277-3295 (1997). [CrossRef]
  5. J. R. Dwyer, C. T. Hebeisen, R. Ernstorfer, M. Harb, V. B. Deyirmenjian, R. E. Jordan, R. J. D. Miller, "Femtosecond electron diffraction: ‘making the molecular movie’," Philos. Trans. R. Soc. London, Ser. A 364, 741-778 (2006). [CrossRef] [PubMed]
  6. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, "An Atomic-Level View of Melting Using Femtosecond Electron Diffraction," Science 302, 1382-1385 (2003). [CrossRef] [PubMed]
  7. J. C. Williamson, J. Cao, H. Ihee, H. Frey, and A. H. Zewail, "Clocking transient chemical changes by ultrafast electron diffraction," Nature 386,159-162 (1997). [CrossRef]
  8. J. Cao, Z. Hao, H. Park, C. Tao, D. Kau, L. Blaszczyk "Femtosecond electron diffraction for direct measurement of ultrafast atomic motions," Appl. Phys. Lett. 831044-1046 (2003). [CrossRef]
  9. B. J. Siwick, A. A. Green, C. T. Hebeisen, R. J. D. Miller, "Characterization of ultrashort electron pulses by electron-laser pulse cross correlation," Opt. Lett. 301057-1059 (2005). [CrossRef] [PubMed]
  10. V. I. Balykin, M. V. Subbotin, and V. S. Letokhov, "Reflection of an electron beam by femtosecond light waves," Opt. Commun. 129177-183 (1996). [CrossRef]
  11. S. E. Irvine, A. Dechant, and A. Y. Elezzabi, "Generation of 0.4 keV femtosecond electron pulses using impulsively excited surface plasmons," Phys. Rev. Lett. 93, 184801 (2004). [CrossRef] [PubMed]
  12. S. E. Irvine and A. Y. Elezzabi, "Surface-plasmon-based electron acceleration," Phys. Rev. A 73, 013815 (2006). [CrossRef]
  13. S. E. Irvine and A. Y. Elezzabi, "Ponderomotive electron acceleration using surface plasmon waves excited with femtosecond laser pulses," Appl. Phys. Lett. 86, 264102 (2005). [CrossRef]
  14. A. Taflove, Computational Electrodynamics (Artech House, Boston, 1995).
  15. N. Peyghambarian, S. W. Koch, and A. Mysyrowicz, Introduction to Semiconductor Optics. (Prentice Hall, New Jersey, 1993).
  16. A. R. Melnyk and J. R. Harrison, "Resonant Excitation of Plasmons in Thin Films by Electromagnetic Waves," Phys. Rev. Lett. 21, 85-88 (1968). [CrossRef]
  17. P. Agostini, J. Kupersztych, L. A. Lompre, G. Petite, and F. Yergeau, "Direct evidence of ponderomotive effects via laser pulse duration in above-threshold ionization," Phys. Rev. A. 36, 4111-4114 (1987). [CrossRef] [PubMed]
  18. J. P. Girardeau-Montaut and C. Girardeau-Montaut, "Space-charge-limited current density as a function of electron flow duration in an emissive diode," J. Appl. Phys. 65, 2889-2895 (1989). [CrossRef]
  19. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, "Ultrafast electron optics: Propagation dynamics of femtosecond electron packets," J. Appl. Phys. 92, 1643-1648 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2464 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited