OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 10 — May. 14, 2007
  • pp: 5925–5930

Tunable dual-wavelength erbium-doped fiber laser stabilized by four-wave mixing in a 35-cm highly nonlinear bismuth-oxide fiber

Mable P. Fok and Chester Shu  »View Author Affiliations


Optics Express, Vol. 15, Issue 10, pp. 5925-5930 (2007)
http://dx.doi.org/10.1364/OE.15.005925


View Full Text Article

Acrobat PDF (310 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using four-wave mixing in a 35-cm highly nonlinear bismuth-oxide fiber incorporated in an erbium-doped fiber laser, a stable dual-wavelength output is obtained. The spectral spacing has been tuned from 1.3 to 7.2 nm with a tunable fiber Bragg grating. Simultaneous tuning of the two wavelengths over 20 nm is also demonstrated using a tunable bandpass filter together with a birefringent filter defining a 100-GHz frequency comb. The output stability has been experimentally analyzed. An abrupt reduction in the intensity fluctuation is observed when the amplifier output power reaches 22.0 dBm. At 22.3 dBm, the fluctuation attains a lower limit of ~1 dB.

© 2007 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 21, 2007
Revised Manuscript: April 22, 2007
Manuscript Accepted: April 22, 2007
Published: April 30, 2007

Citation
Mable P. Fok and Chester Shu, "Tunable dual-wavelength erbium-doped fiber laser stabilized by four-wave mixing in a 35-cm highly nonlinear bismuth-oxide fiber," Opt. Express 15, 5925-5930 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-10-5925


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Tadakuma, O. Aso, and S. Namiki, "A 104 GHz 328 fs soliton pulse train generation through a comb-like dispersion profiled fiber using short high nonlinearity dispersion fibers," in Optical Fiber Communication Conference, Vol. 3 of 2000 OSA Technical Digest Series (Optical Society of America, 2000), paper ThL3-1.
  2. A. J. Ruggiero, M. W. Bowers, and R. A. Young, "Mini-AM DIAL System," in Laser and Electro-Optics 1999, Summary of Papers (Optical Society of America, 1999), paper CFE6.
  3. L. Xia, P. Shum, and T. H. Cheng, "Photonic generation of microwave signals using a dual-transmission-band FBG filter with controllable wavelength spacing," Appl. Phys. B 86, 61-64 (2006). [CrossRef]
  4. D. Liu, N. Q. Ngo, G. Ning, P. Shum, S. C. Tjin, "Tunable microwave photonic notch filter using a dual-wavelength fiber laser with phase modulation," Opt. Commun. 266, 240-248 (2006). [CrossRef]
  5. J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, "Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters," IEEE Photon. Technol. Lett. 8, 60-62 (1996). [CrossRef]
  6. A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, and M. Tetu, "Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid," J. Lightwave Technol. 18, 825- 831 (2000). [CrossRef]
  7. Y.-G. Han, G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, "Lasing wavelength and spacing switchable multiwavelength fiber laser from 1510 to 1620 nm," IEEE Photon. Technol. Lett. 17, 989-991 (2005). [CrossRef]
  8. Y. Liu, X. Feng, S. Yuan, G. Kai, and X. Dong, "Simultaneous four-wavelength lasing oscillations in an erbium-doped fiber laser with two high birefringence fiber Bragg gratings," Opt. Express 12, 2056-2061 (2004). [CrossRef]
  9. Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, "Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method," IEEE Photon. Technol. Lett. 18, 1964-1966 (2006). [CrossRef]
  10. Y. J. Song, L. Zhan, J. H. Ji, Y. Su, Q. H. Ye, and Y. X. Xia, "Self-seeded multiwavelength Brillouin-erbium fiber laser," Opt. Lett. 30, 486-488 (2005), and references therein. [CrossRef]
  11. X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, "Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber," Opt. Express 13, 142-147 (2005). [CrossRef]
  12. X. Yang, X. Dong, S. Zhang, F. Lu, X. Zhou, and C. Lu, "Multiwavelength erbium-doped fiber laser with 0.8-nm spacing using sampled Bragg grating and photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 2538-2540 (2005). [CrossRef]
  13. A. Zhang, H. Liu, M. S. Demokan, and H. Y. Tam, "Stable and broad bandwidth multiwavelength fiber ring laser incorporating a highly nonlinear photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 2535-2537 (2005). [CrossRef]
  14. N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, "Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1km-1," in Optical Fiber Communication Conference, Vol. 2 of 2004 OSA Technical Digest Series (Optical Society of America, 2004), paper PDP26.
  15. Y.-G. Han, T. V. A. Tran, and S. B. Lee, "Wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on four-wave mixing of dispersion shifted fiber," Opt. Lett. 31, 697-699 (2006). [CrossRef]
  16. R. M. Sova, C. S. Kim, and J. U. Kang, "Tunable all-fiber birefringence comb filters," Optical Fiber Communication Conference and Exhibit 2002, pp. 698 - 699, 2002.
  17. M. P. Fok, K. L. Lee, and C. Shu, "Waveband-switchable SOA ring laser constructed with a phase modulator loop mirror filter," IEEE Photon. Technol. Lett. 17, 1393-1395 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited