OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 10 — May. 14, 2007
  • pp: 6019–6035

Self ordering threshold and superradiant backscattering to slow a fast gas beam in a ring cavity with counter propagating pump

C. Maes, J. K. Asbóth, and H. Ritsch  »View Author Affiliations


Optics Express, Vol. 15, Issue 10, pp. 6019-6035 (2007)
http://dx.doi.org/10.1364/OE.15.006019


View Full Text Article

Enhanced HTML    Acrobat PDF (586 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the dynamics of a fast gaseous beam in a high Q ring cavity counter propagating a strong pump laser with large detuning from any particle optical resonance. As spontaneous emission is strongly suppressed the particles can be treated as polarizable point masses forming a dynamic moving mirror. Above a threshold intensity the particles exhibit spatial periodic ordering enhancing collective coherent backscattering which decelerates the beam. Based on a linear stability analysis in their accelerated rest frame we derive analytic bounds for the intensity threshold of this selforganization as a function of particle number, average velocity, kinetic temperature, pump detuning and resonator linewidth. The analytical results agree well with time dependent simulations of the N-particle motion including field damping and spontaneous emission noise. Our results give conditions which may be easily evaluated for stopping and cooling a fast molecular beam.

© 2007 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(270.6630) Quantum optics : Superradiance, superfluorescence

ToC Category:
Trapping

History
Original Manuscript: October 23, 2006
Revised Manuscript: April 22, 2007
Manuscript Accepted: April 24, 2007
Published: May 2, 2007

Citation
C. Maes, J. K. Asbóth, and H. Ritsch, "Self ordering threshold and superradiant backscattering to slow a fast gas beam in a ring cavity with counter propagating pump," Opt. Express 15, 6019-6035 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-10-6019


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Chu, "Nobel Lecture: The manipulation of neutral particles," C. Cohen-Tannoudji, "Nobel Lecture: Manipulating atoms with photons," and W. D. Phillips, "Nobel Lecture: Laser cooling and trapping of neutral atoms," Rev. Mod. Phys. 70,685-741 (1998). [CrossRef]
  2. E.A. Cornell and C. E. Wieman, "Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments, " Rev. Mod. Phys. 74,875-893 (2002). [CrossRef]
  3. P. Domokos and H. Ritsch, "Mechanical effects of light in optical resonators, " J. Opt. Soc. Am. B 20,1098-1130 (2003). [CrossRef]
  4. A. Beige, P. L. Knight, and G. Vitiello, "Cooling many particles at once," New J. Phys. 7,96 (2005) [CrossRef]
  5. V. Vuleti’c and S. Chu, "Laser cooling of atoms, ions, or molecules by coherent scattering," Phys. Rev. Lett. 84,3787-3790 (2000). [CrossRef] [PubMed]
  6. H. W. Chan, A. T. Black, and V. Vuletic, "Observation of collective-emission-induced cooling of atoms in an optical cavity," Phys. Rev. Lett. 90,063003 (2003). [CrossRef]
  7. P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse,and G. Rempe, "Cavity cooling of a single atom," Nature London 428,50-52 (2004). [CrossRef] [PubMed]
  8. S. Nussmann, K. Murr, M. Hijlkema, B. Weber, A. Kuhn, and G. Rempe, "Vacuum-stimulated cooling of single atoms in three dimensions," e-print quant-ph/0506067.
  9. A. T. Black, H.W. Chan, and V. Vuletic, "Observation of collective friction forces due to spatial self-organization of atoms: from rayleigh to bragg scattering," Phys. Rev. Lett. 91,203001 (2003). [CrossRef] [PubMed]
  10. J. Klinner, M. Lindholdt, B. Nagorny, and A. Hemmerich, "Normal mode splitting and mechanical effects of an optical lattice in a ring cavity," Phys. Rev. Lett. 96,023002 (2006). [CrossRef] [PubMed]
  11. B. Nagorny, T. Elsasser, H. Richter, A. Hemmerich, D. Kruse, C. Zimmermann, and P. Courteille, "Optical lattice in a high-finesse ring resonator," Phys. Rev. A 67,031401(R) (2003). [CrossRef]
  12. Th . Elsässer, B . Nagorny and A. Hemmerich, "Optical bistability and collective behavior of atoms trapped in a high-Q ring cavity," Phys. Rev. A 69,033403 (2004). [CrossRef]
  13. H.L. Bethlem, G. Berden, F.M.H. Crompvoets, R.T. Jongma, A.J.A. van Roij, and G. Meijer, "Electrostatic trapping of ammonia molecules," Nature London 406491-494 (2000). [CrossRef] [PubMed]
  14. N. Vanhaecke, W.D. Melo, B.L. Tolra, D. Comparat, and P. Pillet, "Accumulation of cold cesium molecules via photoassociation in a mixed atomic and molecular trap," Phys. Rev. Lett. 89,063001 (2002). [CrossRef] [PubMed]
  15. R. Fulton, A.I. Bishop, M.N. Shneider, and P.F. Barker, "Controlling the motion of cold molecules with deep periodic optical potentials," Nature Physics 2465-468 (2006). [CrossRef]
  16. R. Fulton, A.I. Bishop, and P.F. Barker, "Optical Stark Decelerator for molecules," Phys. Rev. Lett. 93,243004 (2004). [CrossRef]
  17. R. Bonifacio, C. Pellegrini, and L.M. Narducci, "Collective instabilities and high-gain regime in a free electron laser," Opt. Comm. 50,373-378 (1984). [CrossRef]
  18. R. Bonifacio, l. De Salvo, L.M. Narducci, and E.J. D’Angelo, "Exponential gain and self-bunching in a collective atomic recoil laser," Phys. Rev. A 50,1716-1724 (1994). [CrossRef] [PubMed]
  19. D. Kruse, C. von Cube, C. Zimmermann, and Ph.W. Courteille, ‘Observation of lasing mediated by collective atomic recoil," Phys. Rev. Lett. 91,183601 (2003). [CrossRef] [PubMed]
  20. S. Slama, C. von Cube, B. Deh, A. Ludewig, C. Zimmermann and Ph. W. Courteille, "Phase-sensitive detection of bragg scattering at 1D optical lattices," Phys. Rev. Lett. 94,193901 (2005). [CrossRef] [PubMed]
  21. C. von Cube, S. Slama, D. Kruse, C. Zimmermann, and Ph.W. Courteille, G. R.M. Robb, N. Piovella, and R. Bonifacio, "Self-synchronization and dissipation-induced threshold in Collective Atomic Recoil Lasing," Phys. Rev. Lett. 93,083601 (2004) [CrossRef] [PubMed]
  22. A.T. Black, J.K. Thompson, and V. Vuleti´c, "Collective light forces on atoms in resonators," J. Phys. B: At. Mol. Opt. Phys. 38, (2005). [CrossRef]
  23. M. Gangl and H. Ritsch, "Cold atoms in a high-Q ring cavity," Phys. Rev. A 61,043405 (2000). [CrossRef]
  24. J. K. Asb’oth, P. Domokos, H. Ritsch and A. Vukics, "Self-organization of atoms in a cavity field: Threshold, bistability, and scaling laws," Phys. Rev A 72 (5) 053417 (2005). [CrossRef]
  25. D. Nagy, J. K. Asb’oth, P. Domokos, and H. Ritsch, "Self-organization of a laser-driven cold gas in a ring cavity," EuroPhys Lett. 74(2),254 (2006). [CrossRef]
  26. G.R.M. Robb, N. Piovella, A. Ferraro, R. Bonifacio, Ph. W. Courteille, and C. Zimmermann, "Collective atomic recoil lasing including friction and diffusion effects," Phys. Rev. A 69, 041403 (R) (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited