OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 10 — May. 14, 2007
  • pp: 6167–6176

Optical gradient flow focusing

Yiqiong Zhao, Bryant S. Fujimoto, Gavin D. M. Jeffries, Perry G. Schiro, and Daniel T. Chiu  »View Author Affiliations

Optics Express, Vol. 15, Issue 10, pp. 6167-6176 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (544 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper describes a new method for carrying out flow cytometry, which employs optical gradient forces to guide and focus particles in the fluid flow. An elliptically shaped Gaussian beam was focused at the center of a microchannel to exert radiation pressure on suspended nanoparticles that are passing through the channel, such that these particles are guided to the center of the channel for efficient detection and sorting. To verify the efficiency of this optical-gradient-flow-focusing method, we present numerical simulations of the trajectories of the nanoparticles in both electroosmotic flow (EOF) and pressure-driven flow (PDF).

© 2007 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(140.3300) Lasers and laser optics : Laser beam shaping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(280.2490) Remote sensing and sensors : Flow diagnostics

ToC Category:

Original Manuscript: March 1, 2007
Revised Manuscript: April 27, 2007
Manuscript Accepted: April 30, 2007
Published: May 3, 2007

Virtual Issues
Vol. 2, Iss. 6 Virtual Journal for Biomedical Optics

Yiqiong Zhao, Bryant S. Fujimoto, Gavin D. Jeffries, Perry G. Schiro, and Daniel T. Chiu, "Optical gradient flow focusing," Opt. Express 15, 6167-6176 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Van Dilla, Flow Cytometry: Instrumentation and Data Analysis (Academic, London, 1985).
  2. M. R. Melamed, T. Lindmo, and M. L. Mendelsohn, Flow Cytometry and Sorting (New York, Wiley, 1991).
  3. S. L. Anna, N. Bontoux, and H. A. Stone, "Formation of dispersions using "flow focusing" in microchannels," Appl. Phys. Lett. 82, 364-366 (2003). [CrossRef]
  4. P. Garstecki, I. Gitlin, W. DiLuzio and G. M. Whitesides, "Formation of monodisperse bubbles in a microfluidic flow-focusing device," Appl. Phys. Lett. 85, 2649-2651 (2004). [CrossRef]
  5. M. Seo, Z. Nie, S. Xu, P. C. Lewis, and E. Kumacheva, "Microfluidics: from dynamic lattices to periodic arrays of polymer disks," Langmuir 21, 4773-4775 (2005). [CrossRef] [PubMed]
  6. M. Seo, Z. Nie, S. Xu, M. Mok, P. C. Lewis, R. Graham and E. Kumacheva, "Continuous microfluidic reactors for polymer particles," Langmuir 21, 11614-11622 (2005). [CrossRef] [PubMed]
  7. C. Simonnet and A. Groisman, "Two-dimensional hydrodynamic focusing in a simple microfluidic device," Appl. Phys. Lett. 87, 114104 (2005). [CrossRef]
  8. J. B. Knight, A. Vishwanath, J. P. Brody, and R. H. Austin, "Hydrodynamic focusing on a silicon chip: Mixing nanoliters in microseconds," Phys. Rev. Lett. 80, 3863-3866 (1998). [CrossRef]
  9. S. Takeuchi, P. Garstecki, D. B. Weibel and G. M. Whitesides, "An axisymmetric flow-focusing microfluidic device," Adv. Mater. 17, 1067-1072 (2005). [CrossRef]
  10. W. J. Jeong, J. Y. Kim, J. Choo, E. K. Lee, C. S. Han, D. J. Beebe, G. H. Seong, and S. H. Lee, "Continuous fabrication of biocatalyst immobilized microparticles using photopolymerization and immiscible liquids in microfluidic systems," Langmuir 21, 3738-3741 (2005). [CrossRef] [PubMed]
  11. H.J. Oh, S.H. Kim, J.Y. Baek, G.H. Seong and S.H. Lee, "Hydrodynamic micro-encapsulation of aqueous fluids and cells via ‘on the fly’ photopolymerization," J. Micromech. Microeng. 16, 285-291 (2006). [CrossRef]
  12. S. Y. Yang, S. K. Hsiung, Y. C. Hung, C. M. Chang, T. L. Liao, and G. B. Lee "A cell counting/sorting system incorporated with a microfabricated flow cytometer chip," Meas. Sci. Technol. 17, 2001-2009 (2006). [CrossRef]
  13. G. B. Lee, C. I. Hung, B. J. Ke, G. R. Huang, B. H. Hwei, and H. F. Lai, "Hydrodynamic focusing for a micromachined flow cytometer," ASME J. Fluids Eng. 123, 672-679 (2001). [CrossRef]
  14. D. Huh, Y.-C. Tung, H.-H. Wei, J. B. Growtherg, S. J. Skerlos, K. Kurabayashi, and S. Takayama, "Use of air-liquid two-phase flow in hydrophobic microfluidic channels for disposable flow cytometers," Biomed. Microdevices 4, 141-149 (2002). [CrossRef]
  15. D. P. Schrum, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, "Microchip flow cytometry using electrokinetic focusing," Anal. Chem. 71, 4173-4177 (1999). [CrossRef] [PubMed]
  16. E. Altendorf, D. Zebert, M. Holl, and P. Yager, "Differential blood cell counts obtained using a microchannel based flow cytometer," in Proceedings of IEEE Conference on Solid-State Sensors and Actuators, Chicago, IL, 531-534 (1997).
  17. G. Goddard, J. C. Martin, S. W. Graves, and G. Kaduchak, "Ultrasonic particle-concentration for sheathless focusing of particles for analysis in a flow cytometer," Cytometry Part A,  69A, 66-74 (2006). [CrossRef]
  18. C. H. Yu, J. Vykoukal, D. M. Vykoukal, J. A. Schwartz, L. Shi, and P. R. C. Gascoyne, "Three-dimensional dielectrophoretic particle focusing channel for microcytometry applications," J. Microeletromech. Syst. 14, 480-487 (2005). [CrossRef]
  19. C. H. Lin, G. B. Lee, L. M. Fu, and B. H. Hwey, "Vertical focusing device utilizing dielectrophoretic force and its application on microflow cytometer," J. Microelectromech. Syst. 13, 923-932 (2004). [CrossRef]
  20. A. Ashkin, "Trapping of atoms by resonance radiation pressure," Phys. Rev. Lett. 40, 729-732 (1978). [CrossRef]
  21. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  22. R. Applegate, Jr., J. Squier, T. Vestad, J. Oakey, and D. Marr, "Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars," Opt. Express 12, 4390-4398 (2004). [CrossRef] [PubMed]
  23. C. L. Kuyper, B. S. Fujimoto, Y. Zhao, P. G. Schiro, and D. T. Chiu, "Accurate sizing of nanoparticles using confocal correlation Spectroscopy," J. Phys. Chem. B 110, 24433-24441 (2006). [CrossRef] [PubMed]
  24. T. Tlusty, A. Meller, R. Bar-Ziv, "Optical gradient forces of strongly localized fields," Phys. Rev. Lett. 81, 1738-1741 (1998). [CrossRef]
  25. A. Rohrbach, "Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory," Phys. Rev. Lett. 95, 168102 (2005). [CrossRef] [PubMed]
  26. G. D. M. Jeffries, J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, "Using polarization-shaped optical vortex traps for single-cell nanosurgery," Nano Lett. 7, 415-420 (2007). [CrossRef] [PubMed]
  27. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. D. Yang, and J. Liphardt, "Optical trapping and integration of semiconductor nanowire assemblies in water," Nat. Mater. 5, 97-101 (2006). [CrossRef] [PubMed]
  28. C. Coirault, J. C. Pourny, F. Lambert, Y. Lecarpentier, "Optical tweezers in biology and medicine," Med.Sci. 19, 364-367 (2003).
  29. Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996). [CrossRef]
  30. R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, "Quantitative measurements of force and displacement using an optical trap," Biophys. J. 70, 1813-1822 (1996). [CrossRef] [PubMed]
  31. D. L. Ermak and J. A. McCammon, "Brownian dynamics with hydrodynamic interactions," J. Chem. Phys. 69, 1352-1360 (1978). [CrossRef]
  32. J. G. Knudsen and D. L. Katz, Fluid dynamics and heat transfer (McGraw-Hill Book Co. Inc., New York 1958).
  33. N. M. Natarajan and S. M. Lakshmanan, "Laminar Flow in rectangular ducts: prediction of velocity profiles and friction factor," Indian J. Technol. 10, 435-438 (1972).
  34. P. Vasseur and R. G. Cox, "The lateral migration of a spherical particle in two-dimensional shear flows," J. Fluid Mechanics 78, 385-413 (1976). [CrossRef]
  35. U. S. Agarwal, A. Dutta, and R. A. Mashelkar, "Migration of macromolecules under flow: the physical origin and engineering implications," Chem. Eng. Sci. 49, 1693-1717 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited