OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 10 — May. 14, 2007
  • pp: 6414–6419

Broadband circular polarizer using stacked chiral polymer films

Yuhua Huang, Ying Zhou, and Shin-Tson Wu  »View Author Affiliations

Optics Express, Vol. 15, Issue 10, pp. 6414-6419 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (111 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A scattering-free broadband (~120 nm bandwidth) circular polarizer is demonstrated by stacking three chiral polymer films with different pitch lengths. Using 4×4 matrix method, we have theoretically simulated the transmission spectra of each chiral polymer film and the three stacked films. Simulation results agree well with experiment. A broadband circular polarizer with bandwidth ranging from 400 to 736 nm can be achieved by stacking 8 such chiral polymer films together. Simulation results indicate that if a high birefringence (∆n~0.35) polymer film is employed the number of films can be reduced to three. Potential applications of these circular polarizers for liquid crystal displays, optical communications, and optical remote sensors are discussed.

© 2007 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(160.3710) Materials : Liquid crystals
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Optical Devices

Original Manuscript: March 28, 2007
Revised Manuscript: May 2, 2007
Manuscript Accepted: May 8, 2007
Published: May 10, 2007

Yuhua Huang, Ying Zhou, and Shin-Tson Wu, "Broadband circular polarizer using stacked chiral polymer films," Opt. Express 15, 6414-6419 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001).
  2. M. Xu, F. Xu, and D. K. Yang, "Effects of cell structure on the reflection of cholesteric liquid crystal displays," J. Appl. Phys. 83, 1938-1944 (1998). [CrossRef]
  3. D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, "Control of reflectivity and bistability in displays using cholesteric liquid crystals," J. Appl. Phys. 76, 1331-1333 (1994). [CrossRef]
  4. A. Hochbaum, Y. Jiang, L. Li, S. Vartak, and S. Faris, "Cholesteric color filters: optical characteristics, light recycling, and brightness enhancement," SID Int. Symp. Digest Tech. Papers 40, 1063-1066 (1999). [CrossRef]
  5. S. Pancharatnam, "Achromatic combinations of birefringent plates," Proc. Ind. Acad. Sci. A 41, 130-144 (1956).
  6. T. H. Yoon, G. D. Lee, and J. C. Kim, "Nontwist quarter-wave liquid-crystal cell for a high-contrast reflective display," Opt. Lett. 25, 1547-1549 (2000). [CrossRef]
  7. Z. Z. Zhuang, J. S. Patel, and Y. J. Kim, "Behavior of the cholesteric liquid-crystal Fabry-Perot cavity in the Bragg reflection band," Phys. Rev. Lett. 84, 1168-1171 (2000). [CrossRef] [PubMed]
  8. J. B. Geddes, A. Lakhtakia, and M. W. Meredith, "Circular Bragg phenomenon and pulse bleeding in cholesteric liquid crystals," Opt. Commun. 82, 45-47 (2000). [CrossRef]
  9. Q. Hong, T. X. Wu, and S. T. Wu, "Optical wave propagation in a cholesteric liquid crystal using the finite element method," Liq. Cryst. 30, 367-75 (2003). [CrossRef]
  10. P. Cicuta, A. R. Tajbakhsh, and E. M. Terentjev, "Photonic gaps in cholesteric elastomers under deformation," Phys. Rev. E  70, 011703 (2004). [CrossRef]
  11. C. Binet, M. Mitov, and M. Mauzac, "Switchable broadband light reflection in polymer-stabilized cholesteric liquid crystals," J. Appl. Phys. 90, 1730-1734 (2001). [CrossRef]
  12. D. Armitage, I. Underwood, and S. T. Wu, Introduction to Microdisplays (Wiley, New York, 2006). [CrossRef]
  13. D. Coates, M. J. Goulding, S. Greenfield, J. M. Hammer, S. A. Marden, and Q. L. Parri, "High performance wide-band reflective cholesteric polarizers," SID Int. Symp. Digest Tech. Papers Application Session 27, 67-70 (1996).
  14. S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, "Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals," Jpn. J. Appl. Phys. 43, 7634-7638 (2004). [CrossRef]
  15. L. Li and S. M. Faris, "A single-layer super broadband reflective polarizer," SID Int. Symp. Digest Tech. Papers 37, 111-115 (1996).
  16. M. Belalia, M. Mitov, C. Bourgerette, A. Krallafa, M. Belhakem, and D. Bormann, "Cholesteric liquid crystals with a helical pitch gradient: Spatial distribution of the concentration of chiral groups by Raman mapping in relation with the optical response and the microstructure," Phys. Rev. E 74, 051704 (2006). [CrossRef]
  17. S. Relaix, C. Bourgerette, and M. Mitov, "Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal," Appl. Phys. Lett. 89, 251907 (2006). [CrossRef]
  18. Z. Ge, T. X. Wu, X. Zhu, and S. T. Wu, "Reflective liquid crystal displays with asymmetric incidence and exit angles," J. Opt. Soc. Am. A 22, 966-977 (2005). [CrossRef]
  19. Y. Huang, T. X. Wu, and S. T. Wu, "Simulations of liquid-crystal Fabry-Perot etalons by an improved 4×4 matrix method," J. Appl. Phys. 93, 2490-2495 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited