OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 12 — Jun. 11, 2007
  • pp: 7117–7125

Large depth-high resolution full 3D imaging of the anterior segments of the eye using high speed Optical Frequency Domain Imaging

C. Kerbage, H. Lim, W. Sun, M. Mujat, and J.F. de Boer  »View Author Affiliations


Optics Express, Vol. 15, Issue 12, pp. 7117-7125 (2007)
http://dx.doi.org/10.1364/OE.15.007117


View Full Text Article

Enhanced HTML    Acrobat PDF (459 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Three dimensional rapid large depth range imaging of the anterior segments of the human eye by an optical frequency domain imaging system is presented. The tunable source spans from 1217 to 1356 nm with an average output power of 60 mW providing a measured axial resolution of 10 μm in air based on the coherence envelope. The effective depth range is 4 mm, defined as the distance over which the sensitivity drops by 6 dB, achieved by frequency shifting the optical signal using acousto-optic modulators. The measured maximum sensitivity is 109 dB at a sample arm power of 14.7mW and A-lines rate of 43,900 per second. Images consisting of 512 depth profiles are acquired at an acquisition rate of 85 frames per second. We demonstrate an optical frequency domain imaging system capable of mapping in vivo the entire area of the human anterior segment (13.4 × 12 × 4.2 mm) in 1.4 seconds.

© 2007 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(140.3600) Lasers and laser optics : Lasers, tunable
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: March 8, 2007
Revised Manuscript: April 24, 2007
Manuscript Accepted: April 27, 2007
Published: May 29, 2007

Virtual Issues
Vol. 2, Iss. 7 Virtual Journal for Biomedical Optics

Citation
C. Kerbage, H. Lim, W. Sun, M. Mujat, and J. F. de Boer, "Large depth-high resolution full 3D imaging of the anterior segments of the eye using high speed optical frequency domain imaging," Opt. Express 15, 7117-7125 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7117


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. M. R. Hee, J. A. Izatt, and E. A. Swanson, "Optical coherence tomography of the human retina," Arch. Ophthalmol. 113, 325-332 (1995). [CrossRef] [PubMed]
  3. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, "In-Vivo Optical Coherence Tomography," Am. J. Ophthalmol. 116, 113-115 (1993). [PubMed]
  4. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001). [CrossRef] [PubMed]
  5. M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography of age-related macular degeneration and choroidal neovascularization," Ophthalmology 103, 1260-1270 (1996). [PubMed]
  6. S. Roh, R. J. Noecker, and J. S. Schuman, "Evaluation of coexisting optic nerve head drusen and glaucoma with optical coherence tomography," Ophthalmology 104, 1138-1144 (1997). [PubMed]
  7. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C.A. Puliafito, and J. G. Fujimoto, "Micrometer-scale resolution imaging of the anterior eye in vio with optical coherence tomography," Arch. Ophthalmol. 112, 1584-1589 (1994). [CrossRef] [PubMed]
  8. S. Radhakrishnan, A. M. Rollins, J. E. Roth, A. Yazdanfar, V. Westphal, D. Bardenstein, and J. A. Izatt, "Real-Time Optical Coherence Tomography of the Anterior Segment at 1310nm," Arch. Ophthalmol. 119, 1179-1185 (2001). [PubMed]
  9. S. Kaufman, D. Musch, M. W. Belin, E. J. Cohen, D. Meisler, W. J. Reinhart, I. J. Dell, and W. S. V. Meter, "Confocal Microscopy," Am. Acad. Ophthalmol. 111, 396-406 (2003).
  10. D. Z. Reinstein, R. H. Silverman, S. L. Trokel, and D. J. Coleman, "Corneal pachymetric topography," Ophthalmology 112, 1584-1589 (1994).
  11. A. S. Neubauer, S. G. Priglinger, M. J. Thiel, C. A. May, and U. C. Welge-Luben, "Sterile structural imaging of donor cornea by Optical Coherence Tomography," Cornea 21, 490-494 (2002). [CrossRef] [PubMed]
  12. Y. Li, R. Shekhar, and D. Huang, "Corneal Pachymetry Mapping with high-speed Optical Coherence Tomography," Am. Acad. Ophthalmol. 113, 792-799 (2006).
  13. C. Wirbelauer, C. Scholz, H. Hoerauf, D. Thoai Pham, H. Laqua, and R. Birngruber, "Noncontact Corneal Pachymetry with Slit Lamp-adapted Optical Coherence Tomography," Am. J. Ophthalmol. 133, 444-450 (2002). [CrossRef] [PubMed]
  14. V. Westphal, A. Rollins, S. Radhakrihnan, and J. A. Izatt, "Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle," Opt. Express 10, 397-404 (2002). [PubMed]
  15. S. Radhakrishnan, J. Goldsmith, D. Huang, V. Westphal, D. K. Dueker, A. M. Rollins, J. A. Izatt, and S. D. Smith, "Comparison of Optical Coherence Tomography and Ultrasound Biomicroscopy for detection of Narrow Anterior Chamber Angles," Arch. Ophthalmol. 123, 1053-1059 (2005). [CrossRef] [PubMed]
  16. S. Muscat, N. McKay, S. Parks, E. Kemp, and D. Keating, "Repeatability and reproducibility of corneal thickness measurements by Optical Coherence Tomography," Invest. Ophthalmol. Visual Sci. 43, 1791-1795 (2002).
  17. M. J. Maldonado, L. Ruiz Oblitas, J. M. Munuera, D. Aliseda, A. Garcia-Layana, and J. Moreno-Montanes, "Optical Coherence Tomography evaluation of the corneal cap and stromal bed features after laser in situ keratomileusis for high myopia and astigmatism," Ophthalmology 107, 81-87 (2000). [CrossRef] [PubMed]
  18. G. Geerling, M. Muller, C. Winter, H. Hoerauf, S. Oelckers, and R. Birngtuber, "Intraoperative 2-Dimensional Optical Coherence Tomography as a New Tool for Anterior Segment Surgery," Arch. Ophthalmol. 123, 253-257 (2005). [CrossRef] [PubMed]
  19. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  20. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004). [CrossRef] [PubMed]
  21. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3μm wavelength," Opt. Express 11, 3598-3604 (2003). [CrossRef] [PubMed]
  22. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  23. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]
  24. W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A.F. Fercher, "Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography," Archives of Ophthalmology 121, 695-706 (2003). [CrossRef] [PubMed]
  25. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  26. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B.E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003). [CrossRef]
  27. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, "High-speed wavelength-swept source semiconductor laser with a polygon-scanner-based wavelength filter," Opt. Lett. 28, 1981-1983 (2003). [CrossRef] [PubMed]
  28. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency tunable optical source," Opt. Lett. 22, 340-342 (1997). [CrossRef] [PubMed]
  29. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B.E. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005). [CrossRef] [PubMed]
  30. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting," Opt. Express 12, 4822-4828 (2004). [CrossRef] [PubMed]
  31. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett. 30, 3159-3161 (2005). [CrossRef] [PubMed]
  32. R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006). [CrossRef] [PubMed]
  33. E. C. W. Lee, J. F. de Boer, M. Mujat, H. Lim, and S.H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403-4411 (2006). [CrossRef] [PubMed]
  34. H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, "Optical frequency domain imaging with a rapidly swept laser in the 815-870nm range," Opt. Express 14, 5937-5944 (2006). [CrossRef] [PubMed]
  35. H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, "High-speed imaging of human retina in vivo with swept source optical coherence tomography," Opt. Express 14, 12902-12908 (2006). [CrossRef] [PubMed]
  36. M. V. Sarunic, M. A. Choma, C. Yang, and J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3 by 3 couplers," Opt. Express 13, 957-967 (2005). [CrossRef] [PubMed]
  37. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, "Three dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005). [CrossRef] [PubMed]
  38. Y. Yasuno, M. Yamanari, H. Mori, K. Kawana, Y. Watanabe, M. Miura, A. Miyazawa, T. Oshika, and T. Yatagai, "Clinical examinations of anterior eye segments by three-dimensional swept-source optical coherence tomography," Proc. SPIE 6426, 64260U (2007). [CrossRef]
  39. J. W. McLaren, C. B. Nau, J. C. Erie, and W. M. Bourne, "Corneal thickness measurement by confocal microscopy, ultrasound, and scanning slit method," Am. J. Ophthalmol. 137, 1011-1020 (2004). [CrossRef] [PubMed]
  40. S. Haque, T. Simpson, and L. Jones, "Corneal and Epithelial thickness in Keratoconus: A comparison of Ultrasonic Pachymetry, Obscan II, and Optical Coherence Tomography," J. Refractive Surgery 22, (2006).
  41. G. R. Melles, F. Lander, F. J. Rietveld, L. Remeijer, and W. H. Beekhuis, "A new surgical technique for deep stromal, anterior lamellar keratoplasty," Br. J. Ophthalmol. 83, 327-333 (1999). [CrossRef] [PubMed]
  42. N. Nassif, B. Cense, B. H. Park, M. Pierce, S. H. Yun, B. Bouma, G. Tearney, T. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral domain optical coherence tomography," Opt. Express 12, 367-376 (2004). [CrossRef] [PubMed]
  43. G. Hausler and M. W. Linder, "Coherence Radar and Spectral Radar- new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (3581 KB)     
» Media 2: AVI (6675 KB)     
» Media 3: AVI (7968 KB)     
» Media 4: AVI (1859 KB)     
» Media 5: AVI (8498 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited