OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 12 — Jun. 11, 2007
  • pp: 7826–7839

Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities

Takasumi Tanabe, Masaya Notomi, Eiichi Kuramochi, and Hideaki Taniyama  »View Author Affiliations


Optics Express, Vol. 15, Issue 12, pp. 7826-7839 (2007)
http://dx.doi.org/10.1364/OE.15.007826


View Full Text Article

Enhanced HTML    Acrobat PDF (946 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We systematically studied the spectral and temporal characteristics of wavelength-sized ultrahigh-Q photonic crystal nanocavities based on width-modulated line defects. By employing accurate measurements, we confirmed that the cavity exhibits an ultra-sharp resonance width (1.23 pm), an ultrahigh-Q (1.28×106), and an ultra-long photon lifetime (1.12 ns). We discussed the correlation between the spectral and temporal measurements for various cavities, and obtained extremely good agreement. In addition, we demonstrated photon trapping for the side-coupling configuration by employing ring-down measurement, which sheds light on another interesting aspect of this phenomenon. Finally, we performed pulse propagation experiments for samples with different waveguide-cavity coupling configurations, and achieved a smallest group velocity of about 4.6 km/s for a novel configuration. These results show that we can effectively trap and delay light by using ultra-small cavities, which can potentially increase the packing density of optical buffers and bit-shifters if applied to coupled-cavity waveguides.

© 2007 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators

ToC Category:
Photonic Crystals

History
Original Manuscript: March 16, 2007
Revised Manuscript: June 4, 2007
Manuscript Accepted: June 5, 2007
Published: June 8, 2007

Citation
Takasumi Tanabe, Masaya Notomi, Eiichi Kuramochi, and Hideaki Taniyama, "Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities," Opt. Express 15, 7826-7839 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7826


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, "Ultra-high-Q troid microcavity on a chip," Nature 421, 925-928 (2003). [CrossRef] [PubMed]
  2. T. Kipperberg, S. Spillane, and K. Vahala, "Demonstration of ultra-high-Q small mode volume troid microcavities," Appl. Phys. Lett. 85, 6113-6115 (2004). [CrossRef]
  3. B. Gayral, J. Gerard, A. Lemaitre, C. Dupuis, L. Manin, and J. L. Pelouard, "High-Q wet-etched GaAs microdisks containing InAs quantum boxes," Appl. Phys. Lett. 75, 1908-1910 (1999). [CrossRef]
  4. B. Matthew, T. Johnson, and O. Painter, "Measuring the role of surface chemistry in silicon microphotonics," Appl. Phys. Lett. 88, 131114 (2006). [CrossRef]
  5. J. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. T.-Mieg, " Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998). [CrossRef]
  6. J. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, T. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197- 200 (2004). [CrossRef] [PubMed]
  7. V. Almeida,C. Barrios, R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004). [CrossRef]
  8. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mat. 4, 207-210 (2005). [CrossRef]
  9. T. Asano, B.-S. Song, and S. Noda, "Analysis of the experimental Q factors (¡« 1 million) of photonic crystal nanocavities," Opt. Express 14, 1996-2002 (2006). [CrossRef] [PubMed]
  10. E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006). [CrossRef]
  11. R. Herrmann, T. Sunner, T. Hein, A. Loffler, M. Kamp, and A. Forchel, "Ultrahigh-quality photonic crystal cavity in GaAs," Opt. Lett. 31, 1229-1231 (2006). [CrossRef] [PubMed]
  12. E. Weidner, S. Combri’e, N. Tran, A. De Rossi, J. Nagle, S. Cassette, A. Talneau, and H. Benisty, "Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity," Appl. Phys. Lett. 89, 221104 (2006). [CrossRef]
  13. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007).Q2 [CrossRef]
  14. T. Tanabe, M. Notomi, and E. Kuramochi, "Measurement of an ultra-high-Q photonic crystal nanocavity using a single-side-band frequency modulator," Electron. Lett. 43, 187-188 (2007). [CrossRef]
  15. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004). [CrossRef] [PubMed]
  16. A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamo¡glu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005). [CrossRef] [PubMed]
  17. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005). [CrossRef] [PubMed]
  18. T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip," Opt. Lett. 30, 2575-2577 (2005). [CrossRef] [PubMed]
  19. T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005). [CrossRef]
  20. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005). [CrossRef] [PubMed]
  21. A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, S. Kawanishi, "All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab," Opt. Express 14, 1230-1235 (2006). [CrossRef] [PubMed]
  22. T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007). [CrossRef]
  23. A. Yacomotti, F. Raineri, C. Cojocaru, P. Monnier, J. Levenson, and R. Raj, "Nonadiabatic dynamics of the electromagnetic field and charge carriers in high-Q photonic crystal resonators," Phys. Rev. Lett. 96, 093901 (2006). [CrossRef] [PubMed]
  24. A. Yariv, Y. Xu, R. Lee, and A. Scherer, "Coupled-resonator optical waveguide: A proposal and analysis," Opt. Lett. 24, 711-713 (1999). [CrossRef]
  25. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large groupvelocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]
  26. K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, "Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation," Appl. Phys. Lett. 88, 201904 (2006). [CrossRef]
  27. Y. Vlasov, M. O’Boyle, H. Hamann, and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005). [CrossRef] [PubMed]
  28. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photon. 1, 65-71 (2007). [CrossRef]
  29. T. Asano, B.-S. Song, Y. Akahane, and S. Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron. 12, 1121-1134 (2006).
  30. T. Asano, W. Kunishi, B.-S. Song, and S. Noda, "Time-domain response of point-defect cavities in twodimensional photonic crystal slabs using picosecond light pulse," Appl. Phys. Lett. 88, 151102 (2006). [CrossRef]
  31. L. Bollinger and G. Thomas, "Measurement of the time dependence of scintillation intensity by a delayedcoincidence method," Rev. Sci. Instrum. 32, 1044-1050 (1961). [CrossRef]
  32. P. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005). [CrossRef] [PubMed]
  33. T. Uesugi, B.-S. Song, T. Asano, and S. Noda, "Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab," Opt. Express 14, 377-386 (2006). [CrossRef] [PubMed]
  34. S. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997). [CrossRef]
  35. D. Lukin, A. Imamoglu, "Controlling photons using electromagnetically induced transparency," Nature 413, 273-276 (2001). [CrossRef] [PubMed]
  36. H. Haus, Waves and field in optoelectronics (Prentice Hall, Englewood Cliffs, 1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited