OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 12 — Jun. 11, 2007
  • pp: 7876–7887

Transverse coupling to the core of a photonic crystal fiber: the photo-inscription of gratings

Graham D. Marshall, Dougal J. Kan, Ara A. Asatryan, Lindsay C. Botten, and Michael J. Withford  »View Author Affiliations

Optics Express, Vol. 15, Issue 12, pp. 7876-7887 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (711 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effect of the microstructure on transversely coupled laser light into the core of a photonic crystal fiber is investigated. Computational two-dimensional modeling and direct experimental measurements indicate that there exist angles and positions of the fiber microstructure, relative to a transversely launched laser beam, that preferentially couple laser light into the fiber core. The implications of these observations on long period and fiber-Bragg grating fabrication in photonic crystal fibers are discussed.

© 2007 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(080.2720) Geometric optics : Mathematical methods (general)
(230.1480) Optical devices : Bragg reflectors
(290.4210) Scattering : Multiple scattering

ToC Category:
Photonic Crystal Fibers

Original Manuscript: April 24, 2007
Revised Manuscript: June 1, 2007
Manuscript Accepted: June 1, 2007
Published: June 8, 2007

Graham D. Marshall, Dougal J. Kan, Ara A. Asatryan, Lindsay C. Botten, and Michael J. Withford, "Transverse coupling to the core of a photonic crystal fiber: the photo-inscription of gratings," Opt. Express 15, 7876-7887 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. F. Li, F. C. Salisbury, Z. M. Zhu, T. G. Brown, P. S. Westbrook, K. S. Feder, and R. S. Windeler, "Interaction of supercontinuum and Raman solitons with microstructure fiber gratings," Opt. Express 13, 998-1007 (2005). [CrossRef] [PubMed]
  2. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001). [CrossRef] [PubMed]
  3. H. Dobb, K. Kalli, and D. J. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fibre," Electron. Lett. 40, 657-658 (2004). [CrossRef]
  4. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, "Grating resonances in air-silica microstructured optical fibers," Opt. Lett. 24, 1460-1462 (1999). [CrossRef]
  5. V. Beugin, L. Bigot, P. May, M. Lancry, Y. Quiquempois, M. Douay, G. Melin, A. Fleureau, S. Lempereur, and L. Gasca, "Efficient Bragg gratings in phosphosilicate and germanosilicate photonic crystal fiber," Appl. Opt. 45, 8186-8193 (2006). [CrossRef] [PubMed]
  6. N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, "Bragg gratings in air-silica structured fibers," Opt. Lett. 28, 233-235 (2003). [CrossRef] [PubMed]
  7. L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-640 (2005). [CrossRef]
  8. H. R. Sorensen, J. Canning, J. Laegsgaard, K. Hansen, and P. Varming, "Liquid filling of photonic crystal fibres for grating writing," Opt. Commun. 270, 207-210 (2007). [CrossRef]
  9. S. J. Mihailov, D. Grobnic, H. M. Ding, C. W. Smelser, and J. Broeng, "Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers," IEEE Photon. Technol. Lett. 18, 1837-1839 (2006). [CrossRef]
  10. G. Brambilla, A. A. Fotiadi, S. A. Slattery, and D. N. Nikogosyan, "Two-photon photochemical long-period grating fabrication in pure-fused-silica photonic crystal fiber," Opt. Lett. 31, 2675-2677 (2006). [CrossRef] [PubMed]
  11. P. Steinvurzel, E. D. Moore, E. C. Magi, B. T. Kuhlmey, and B. J. Eggleton, "Long period grating resonances in photonic bandgap fiber," Opt. Express 14, 3007-3014 (2006). [CrossRef] [PubMed]
  12. S. O. Kucheyev and S. G. Demos, "Optical defects produced in fused silica during laser-induced breakdown," Appl. Phys. Lett.,  82, 3230-3232 (2003). [CrossRef]
  13. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002). [CrossRef]
  14. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am. B 19, 2331-2340 (2002). [CrossRef]
  15. D. N. Nikogosyan, "Multi-photon high-excitation-energy approach to fibre grating inscription," Meas. Sci. Tech.  18, R1-R29 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2568 KB)     
» Media 2: MOV (1128 KB)     
» Media 3: MOV (1156 KB)     
» Media 4: MOV (2105 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited