OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 13 — Jun. 25, 2007
  • pp: 7933–7939

Generating Bragg solitons in a coherent medium

Wei Jiang, Qunfeng Chen, Yongsheng Zhang, and Guangcan Guo  »View Author Affiliations


Optics Express, Vol. 15, Issue 13, pp. 7933-7939 (2007)
http://dx.doi.org/10.1364/OE.15.007933


View Full Text Article

Enhanced HTML    Acrobat PDF (236 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we discuss the possibility of producing Bragg solitons in an electromagnetically induced transparency medium. We show that a coherent medium can be engineered to be a Bragg grating with a large Kerr nonlinearity through proper arrangements of light fields. The parameters of the medium can be easily controlled through adjusting the intensities and detunings of lasers. This scheme may provide an opportunity to study the dynamics of Bragg solitons with low power lights.

© 2007 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(270.0270) Quantum optics : Quantum optics
(270.1670) Quantum optics : Coherent optical effects

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 29, 2007
Revised Manuscript: April 26, 2007
Manuscript Accepted: May 2, 2007
Published: June 11, 2007

Citation
Wei Jiang, Qunfeng Chen, Yongsheng Zhang, and Guangcan Guo, "Generating Bragg solitons in a coherent medium," Opt. Express 15, 7933-7939 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-13-7933


Sort:  Year  |  Journal  |  Reset  

References

  1. C. M. de Sterke and J. E. Sipe, "Gap solitons," in Progress in Optics, Vol. 33, E. Wolf, eds. (North-Holland, Amsterdam, 1994), Vol. 33 pp. 203-260.
  2. W. Chen and D. L. Mills, "Gap solitons and the nonlinear optical response of superlattices," Phys. Rev. Lett. 58, 160-163 (1987). [CrossRef] [PubMed]
  3. D. L. Mills and S. E. Trullinger, "Gap solitons in nonlinear periodic structures," Phys. Rev. B 36, 947-952 (1987). [CrossRef]
  4. D. N. Christodoulides and R. I. Joseph, "Slow Bragg solitons in nonlinear periodic structures," Phys. Rev. Lett. 62, 1746-1749 (1989). [CrossRef] [PubMed]
  5. A. B. Aceves and S. Wabnitz, "Self-induced transparency solitons in nonlinear refractive periodic media, " Phys. Lett. A 141, 37-42 (1989). [CrossRef]
  6. J. Feng and F. K. Kneubuhl, "Solitons in a periodic structure with kerr nonlinearity," IEEE J. Quantum Electr. 29, 590-597 (1993). [CrossRef]
  7. B. J. Eggleton, C. M. de Sterke and R. E. Slusher, "Nonlinear pulse propagation in Bragg gratings," J. Opt. Soc. Am. B 14, 2980-2993 (1997). [CrossRef]
  8. C. Conti and S Trillo, "Bifurcation of gap solitons through catastrophe theory, " Phys. Rev. E 64, 036617 (2001). [CrossRef]
  9. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug and J. E. Sipe, "Bragg Grating Solitons," Phys. Rev. Lett. 76, 1627-1630 (1996). [CrossRef] [PubMed]
  10. G. Van Simaeys, S. Coen, M. Haelterman, and S. Trillo, "Observation of Resonance Soliton Trapping due to a Photoinduced Gap in Wave Number," Phys. Rev. Lett. 92, 223902 (2004). [CrossRef] [PubMed]
  11. S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997). [CrossRef]
  12. E. Arimondo, "Coherent population trapping in laser spectroscopy," in Progress in Optics, Vol. 35, E.Wolf, eds. (North-Holland, Amsterdam, 1996), pp. 257-353.
  13. M. Fleischhauer, A. Imamoglu and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633-673 (2005). [CrossRef]
  14. H. Schmidt and A. Imamoğlu, "Giant Kerr nonlinearities obtained by electromagnetically induced transparency," Opt. Lett. 21, 1936-1938 (1996). [CrossRef] [PubMed]
  15. Yuri V. Rostovtsev, Andrey B. Matsko, and Marlan O. Scully, "Electromagnetic-induced transparency and amplification of electromagnetic waves in photonic band-gap materials," Phys. Rev. A 57, 4919-4924 (1998). [CrossRef]
  16. YuriV. Rostovtsev, Andrey B. Matsko, and Marlan O. Scully, "Electromagnetically induced photonic band gap," Phys. Rev. A 60, 712-714 (1999). [CrossRef]
  17. A. Andre and M. D. Lukin, "Manipulating Light Pulses via Dynamically Controlled Photonic Band gap," Phys. Rev. Lett. 89, 143602 (2002). [CrossRef] [PubMed]
  18. A. Andre, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, "Nonlinear Optics with Stationary Pulses of Light," Phys. Rev. Lett. 94, 063902 (2005). [CrossRef] [PubMed]
  19. M. Bajcsy, A. S. Zibrov, and M. Lukin, "Stationary pulses of light in an atomic medium," Nature (London) 426, 638-640 (2003). [CrossRef]
  20. M. Artoni, G. La Rocca, and F. Bassani, "Resonantly absorbing one-dimensional photonic crystals," Phys. Rev. E 72, 046604 (2005). [CrossRef]
  21. M. Artoni and G. La Rocca, "Optically Tunable Photonic Stop Bands in Homogeneous Absorbing Media," Phys. Rev. Lett. 96, 073905 (2006). [CrossRef] [PubMed]
  22. S. E. Harris, J. E. Field and A. Imamo˘glu, "Nonlinear optical processes using electromagnetically induced transparency," Phys. Rev. Lett. 64, 1107-1110 (1990). [CrossRef] [PubMed]
  23. A. A. Krokhin and P. Halevi, "Influence of weak dissipation on the photonic band structure of periodic composites," Phys. Rev. B 53, 1205-1214 (1996). [CrossRef]
  24. A. Tip, A. Moroz and J. M. Combes, "Band structure of absorptive photonic crystals," J. Phys. A 33, 6223-6252 (2000). [CrossRef]
  25. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 2003).
  26. Y. S. Kivshar and G. P. Agrawal, Optical Solitons (Academic Press, London, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited