OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 13 — Jun. 25, 2007
  • pp: 8029–8042

Multi-view image fusion improves resolution in three-dimensional microscopy

Jim Swoger, Peter Verveer, Klaus Greger, Jan Huisken, and Ernst H.K. Stelzer  »View Author Affiliations

Optics Express, Vol. 15, Issue 13, pp. 8029-8042 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (619 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A non-blind, shift-invariant image processing technique that fuses multi-view three-dimensional image data sets into a single, high quality three-dimensional image is presented. It is effective for 1) improving the resolution and isotropy in images of transparent specimens, and 2) improving the uniformity of the image quality of partially opaque samples. This is demonstrated with fluorescent samples such as Drosophila melanogaster and Medaka embryos and pollen grains imaged by Selective Plane Illumination Microscopy (SPIM). The application of the algorithm to SPIM data yields high-resolution images of organ structure and gene expression, in some cases at a sub-cellular level, throughout specimens ranging from several microns up to a millimeter in size.

© 2007 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(100.3010) Image processing : Image reconstruction techniques
(100.6890) Image processing : Three-dimensional image processing
(180.0180) Microscopy : Microscopy
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:
Image Processing

Original Manuscript: March 26, 2007
Revised Manuscript: May 23, 2007
Manuscript Accepted: May 23, 2007
Published: June 13, 2007

Virtual Issues
Vol. 2, Iss. 7 Virtual Journal for Biomedical Optics

Jim Swoger, Peter Verveer, Klaus Greger, Jan Huisken, and Ernst H. K. Stelzer, "Multi-view image fusion improves resolution in three-dimensional microscopy," Opt. Express 15, 8029-8042 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. S. Hell, and E. H. K. Stelzer, "Properties of a 4Pi confocal fluorescence microscope," J. Opt. Soc. Am. A 9, 2159-2166 (1992). [CrossRef]
  2. E. H. K. Stelzer and S. Lindek, "Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy," Opt. Commun. 111, 536-547 (1994). [CrossRef]
  3. W. Drexler, "Ultrahigh-resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004). [CrossRef] [PubMed]
  4. M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, "I5M: 3D widefield light microscopy with better than 100 nm axial resolution," J. Microsc. 195, 10-16 (1999). [CrossRef] [PubMed]
  5. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," PNAS 97, 8206-8210 (2000). [CrossRef] [PubMed]
  6. S. Kawata, "The optical computed tomography microscope," in Advances in Optical and Electron Microscopy, T. Mulvey and C. R. J. Sheppard, eds., (Academic Press Limited, San Diego, 1994) Vol. 14.
  7. S. Kikuchi, K. Sonobe, L. S. Sidharta, and N. Ohyama, "Three-dimensional computed tomography for optical microscopes," Opt. Commun. 107, 432-444 (1994). [CrossRef]
  8. J. Sharpe, et al. "Optical projection tomography as a tool for 3D microscopy and gene expression studies," Science 296, 541-545 (2002). [CrossRef] [PubMed]
  9. A. L. Wilke, S. A. Jordan, J. A. Sharpe, D. J. Price, and I. J. Jackson, "Widespread tangential dispersion and extensive cell death during early neurogenesis in the mouse neocortex," Dev. Biol. 267, 109-118 (2004). [CrossRef]
  10. P. J. Shaw, D. A. Agard, Y. Hiraoka, and J. W. Sedat,   "Tilted view reconstruction in optical microscopy," Biophys. J. 55, 101-110 (1989). [CrossRef] [PubMed]
  11. J. Bradl, M. Hausmann, V. Ehemann, D. Komitowski, and C. Cremer, "A tilting device for three-dimensional microscopy: application to in situ imaging of interphase cell nuclei," J. Microsc. 168, 47-57 (1992). [CrossRef] [PubMed]
  12. C. J. Cogswell, K. G. Larkin, and H. U. Klemm,   "Fluorescence microtomography: multi-angle image acquisition and 3D digital reconstruction," SPIE Proc. 2655, 109-115 (1996). [CrossRef]
  13. M. Kozubek, et al. "Automated microaxial tomography of cell nuclei after specific labeling by fluorescence in situ hybridisation," Micron 33, 655-665 (2002). [CrossRef] [PubMed]
  14. J. Bradl, M. Hausmann, B. Schneider, B. Rinke, and C. Cremer, "A versatile 2π-tilting device for fluorescence microscopes," J. Microsc. 176, 211-221 (1994). [CrossRef]
  15. P. J. Verveer and T. M. Jovin, "Improved resolution from multiple images of a single object: application to fluorescence microscopy," Appl. Opt. 37, 6240-6246 (1998). [CrossRef]
  16. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K.Stelzer, "Optical sectioning deep inside live embryos by selective plane illumination microscopy," Science 305, 1007-1009 (2004). [CrossRef] [PubMed]
  17. A. H. Voie, "Imaging the intact guinea pig tympanic bulla by orthogonal-plane fluorescence optical sectioning microscopy," Hearing Research 171, 119-128 (2002). [CrossRef] [PubMed]
  18. H.-U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, "Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain," Nat. Methods 4, 331-336 (2007). [CrossRef] [PubMed]
  19. P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. K. Stelzer, "High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy," Nat. Methods, 4, 311-313 (2007). [PubMed]
  20. K. Greger, J. Swoger, and E. H. K. Stelzer, "Basic building units and properties of a fluorescence single plane illumination microscope," Rev. Sci. Instrum. 78, 023705 (2007). [CrossRef] [PubMed]
  21. A. Abbott, "Biology’s new dimension," Nature 424, 870-872 (2003). [CrossRef] [PubMed]
  22. M. Born and E. Wolf, Principles of Optics 7th ed., (Cambridge University Press, Cambridge, CB2 2RU, U. K., 1999).
  23. K. Sätzler and R. Eils, "Resolution improvement by 3-D reconstructions from tilted views in axial tomography and confocal theta microscopy," Bioimaging 5, 171-182 (1997). [CrossRef]
  24. S. Kikuchi, K. Sonobe, and N. Ohyama, "Three-dimensional microscopic computed tomography based on generalized Radon transform for optical imaging systems," Opt. Commun. 123, 725-733 (1996). [CrossRef]
  25. R. A. Brooks and G. Di Chiro, "Theory of image reconstruction in computed tomography," Radiology 117, 561-572 (1975). [PubMed]
  26. M. Frasch, "The maternally expressed Drosophila gene encoding the chromatin-binding protein BJ1 is a homolog of the vertebrate gene Regulator of Chromatin Condensation, RCC1," EMBO J. 10, 1225-1236 (1991). [PubMed]
  27. A. A. Gortchakov, et al. "Chriz, a chromodomain protein specific for the interbands of Drosophila melanogaster polytene chromosomes," Chromosoma 114, 54-65 (2005). [CrossRef] [PubMed]
  28. See the Medaka Expression Pattern Database (MEPD), http://pubservl.embl.de:8280/pubserv/servlet/de.embl.th.mepd.servlets.MdbShowClone01?cloneID=1251>.
  29. R. Quiring, et al. "Large-scale expression screening by automated whole-mount in situ hybridization," Mech. Dev. 121, 971-976 (2004). [CrossRef] [PubMed]
  30. C. J. Engelbrecht, and E. H. K. Stelzer,   "Resolution enhancement in a light-sheet-based microscope (SPIM)," Opt. Lett. 31, 1477-1479 (2006). [CrossRef] [PubMed]
  31. J. Swoger, J. Huisken, and E. H. K. Stelzer,   "Multiple imaging axis microscopy improves resolution for thick-sample applications," Opt. Lett. 28, 1654-1656 (2003). [CrossRef] [PubMed]
  32. L. G. Brown, "A survey of image registration techniques," ACM Computing Surveys 24, 325-376 (1992). [CrossRef]
  33. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++, 2nd Ed. (Cambridge University Press, Cambridge, U.K., 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1550 KB)     
» Media 2: MOV (1945 KB)     
» Media 3: MOV (2331 KB)     
» Media 4: MOV (99 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited