OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 13 — Jun. 25, 2007
  • pp: 8065–8075

Total internal reflection photonic crystal prism

Ethan Schonbrun, Maxim Abashin, John Blair, Qi Wu, Wounjhang Park, Yeshaiahu Fainman, and Christopher J. Summers  »View Author Affiliations

Optics Express, Vol. 15, Issue 13, pp. 8065-8075 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (630 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An integrated total internal reflection prism is demonstrated that generates a transversely localized evanescent wave along the boundary between a photonic crystal and an etched out trench. The reflection can be described by either the odd symmetry of the Bloch wave or a tangential momentum matching condition. In addition, the Bloch wave propagates through the photonic crystal in a negative refraction regime, which manages diffraction within the prism. A device with three input channels has been fabricated and tested that illuminates different regions of the reflection interface. The reflected wave is then sampled by a photonic wire array, where the individual channels are resolved. Heterodyne near field scanning optical microscopy is used to characterize the spatial phase variation of the evanescent wave and its decay constant.

© 2007 Optical Society of America

OCIS Codes
(230.5480) Optical devices : Prisms
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Photonic Crystals

Original Manuscript: April 2, 2007
Revised Manuscript: May 17, 2007
Manuscript Accepted: May 23, 2007
Published: June 13, 2007

Ethan Schonbrun, Maxim Abashin, John Blair, Qi Wu, Wounjhang Park, Yeshaiahu Fainman, and Christopher J. Summers, "Total internal reflection photonic crystal prism," Opt. Express 15, 8065-8075 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. D. Axelrod, "Cell-substrate contacts illuminated with total internal reflection fluorescence," J. Cell. Biol. 89, 141-145 (1981). [CrossRef] [PubMed]
  2. R. C. Reddick, R. J. Warmack, T. R. Ferrel, "New form of scanning optical microscopy," Phys. Rev. B 39, 767-770 (1990). [CrossRef]
  3. N. J. Harrick, Internal Reflection Spectroscopy, (Interscience, New York, 1967).
  4. A. Yariv, Optical Electronics in Modern Communications, (Oxford, New York, 1997).
  5. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer-Verlag, Berlin, 1988).
  6. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-929 (2003). [CrossRef] [PubMed]
  7. K. Sakoda, Optical Properties of Photonic Crystals, (Springer Series, Berlin, 2001).
  8. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Measurement of photonic band Structure in a two-dimensional periodic dielectric array," Phys. Rev. Lett. 68, 2023 (1991). [CrossRef]
  9. H. Kosaka, T. Kawashima, A. Tomita, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwavecircuits using wavelength-dependent angular beam steering," Appl. Phys. Lett. 74, 1370-1372 (1999). [CrossRef]
  10. Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, "Photonic crystal polarization splitter," Electron. Lett. 35, 1271-1272 (1999). [CrossRef]
  11. E. Schonbrun, Q. Wu, W. Park, T. Yamashita, C. J. Summers, "Polarization beam splitter based on a photonic crystal heterostructure," Opt. Lett. 31, 3104-3106 (2006).
  12. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett. 74, 1212-1214 (1999). [CrossRef]
  13. A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, "Negative refraction at infrared wavelengths in a two-dimensional photonic crystal," Phys. Rev. Lett. 93, 073902 (2004). [CrossRef] [PubMed]
  14. E. Schonbrun, T. Yamashita, W. Park, and C. J. Summers, "Negative-Index imaging by an index-matched photonic crystal slab," Phys. Rev. B 73, 195117 (2006). [CrossRef]
  15. B. Momeni, J. Huang, M. Solatani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi "Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms," Opt. Express 14, 2413 (2006). [CrossRef] [PubMed]
  16. T. Yamashita and C. J. Summers, "Evaluation of self-collimated beams in photonic crystals for optical interconnect" J. Select. Areas. Commun. 23, 1341 (2005). [CrossRef]
  17. Z. Ruan, M. Qiu, S. Xiao, S. He, and L. Thylen, "Coupling between plane waves and Bloch waves in photonic crystals with negative refraction," Phys. Rev. B. 71, 045111 (2005). [CrossRef]
  18. W. Park, "Modeling of photonic crystals" in Handbook of Theoretical and Computational Nanotechnology Vol. 7, M. Rieth and W. Schommers, ed., (American Scientific Publishers, Stevenson Ranch, CA, 2006), pp. 263-327.
  19. B. Lombardet, L. A. Dunbar, R. Ferrini, and R. Houdre, "Fourier analysis of Bloch wave propagation in photonic crystals" J. Opt. Soc. Am. B 22, 1179-1190 (2005). [CrossRef]
  20. I. De Leon and F. S. Roux, "Fourier analysis of reflection and refraction in two-dimensional photonic crystals" Phys. Rev. B 71, 235105 (2005). [CrossRef]
  21. M. L. M. Balisteri, J. P. Korterik, L. Kuipers and N. F. van Hulst, "Local observations of phase singularities in optical fields in waveguide structures" Phys. Rev. Lett. 85, 294 (2000). [CrossRef]
  22. P. Tortora, M. Abashin, I. Märki, W. Nakagawa, L. Vaccaro, M. Salt, H. P. Herzig, U. Levy, and Y. Fainman "Observation of amplitude and phase in ridge and photonic crystal waveguides operating at 1.55 μm by use of Heterodyne Scanning Near-Field Optical Microscopy," Opt. Lett. 30, 2885 (2005). [CrossRef] [PubMed]
  23. E. Schonbrun, Q. Wu, W. Park, T. Yamashita, C. J. Summers, M. Abashin and Y. Fainman, "Wave front evolution of negatively refracted waves in a photonic crystal" Appl. Phys. Lett. 90, 041113 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited