OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 13 — Jun. 25, 2007
  • pp: 8275–8283

High-flux photon-pair source from electrically induced parametric down conversion after second-harmonic generation in single optical superlattice

Dong Huang and Weilong She  »View Author Affiliations

Optics Express, Vol. 15, Issue 13, pp. 8275-8283 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (186 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present here a possible high-flux photon-pair source constructed by single lithium niobate optical superlattice (OSL) with a combined quasi-periodically and periodically poled structure, which is from the principle of electrically induced parametric down conversion (PDC) after second-harmonic generation (SHG), predicted by the united theory developed in this paper, in which SHG, PDC and electro-optic (EO) effect are comparably treated as two-order nonlinear effects. In the OSL, the e-polarized fundamental frequency photons are first converted to double frequency ones with the same polarization; then the PDC process is triggered by EO effect when the fundamental frequency photons are almost exhausted; finally, the double frequency photons are converted again to a series of two-photon pair of fundamental wave. It is demonstrated that at 100 °C, in a 20.2mm long OSL with a 30V / mm applied electric field, a 100MW/cm2, 1080 nm laser beam can be translated to a flux of high-purity two-photon pairs with a conversion efficiency close to 100%; and for a longer OSL the pump intensity can be further lowered. The device can also act as an ultra-low field electro-optic switch.

© 2007 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.0270) Quantum optics : Quantum optics

ToC Category:
Nonlinear Optics

Original Manuscript: April 19, 2007
Revised Manuscript: June 1, 2007
Manuscript Accepted: June 1, 2007
Published: June 18, 2007

Dong Huang and Weilong She, "High-flux photon-pair source from electrically induced parametric down conversion after second-harmonic generation in single optical superlattice," Opt. Express 15, 8275-8283 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. A. K. Ekert, "Quantum cryptography based on Bell’s theorem," Phys. Rev. Lett. 67, 661 (1991). [CrossRef] [PubMed]
  2. C. H. Bennett and S. J. Wiesner, "Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states," Phys. Rev. Lett. 69, 2881 (1992). [CrossRef] [PubMed]
  3. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895 (1993). [CrossRef] [PubMed]
  4. M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, "Event-ready-detectors Bell experiment via entanglement swapping," Phys. Rev. Lett. 71, 4287 (1993). [CrossRef] [PubMed]
  5. A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, "Conditional quantum dynamics and logic gates," Phys. Rev. Lett. 74, 4083 (1995). [CrossRef] [PubMed]
  6. Y. H. Shih, C. O. Alley, "New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion," Phys. Rev. Lett. 61, 2921 (1988). [CrossRef] [PubMed]
  7. Z. Y. Ou, L. Mandel, "Violation of Bell’s inequality and classical probability in a two-photon correlation experiment," Phys. Rev. Lett. 61, 50 (1988). [CrossRef] [PubMed]
  8. J. G. Rarity, P. R. Tapster, "Experimental violation of Bell’s inequality based on phase and momentum," Phys. Rev. Lett. 64, 2495 (1990). [CrossRef] [PubMed]
  9. F. De Martini, "Amplification of quantum entanglement," Phys. Rev. Lett. 81, 2842 (1998). [CrossRef]
  10. X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, "Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam," Phys. Rev. Lett. 88, 047904 (2002). [CrossRef] [PubMed]
  11. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarization-entangled photons," Phys. Rev. A 60, R773 (1999). [CrossRef]
  12. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337 (1995). [CrossRef] [PubMed]
  13. C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, "High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter," Phys. Rev. A 69, 013807 (2004). [CrossRef]
  14. M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, "Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP," Opt. Exp. 12, 3573 (2004). [CrossRef]
  15. M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, "Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints," Phys. Rev. A 69, 041801(R) (2004). [CrossRef]
  16. K. Banaszek, A. B. U’Ren, and I. A. Walmsley, "Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides," Opt. Lett. 26, 1367(2001). [CrossRef]
  17. J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, K. Peng, "Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables," Phys. Rev. Lett. 90, 167903 (2003). [CrossRef] [PubMed]
  18. A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, "Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4," Opt. Commun. 142, 265 (1997). [CrossRef]
  19. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, "42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate," Opt. Lett. 22, 1834 (1997). [CrossRef]
  20. S. Wang, V. Pasiskevicius, F. Laurell, and H. Karlsson, "Ultraviolet generation by first-order frequency doubling in periodically poled KTiOPO4," Opt. Lett. 23, 1883 (1998). [CrossRef]
  21. I. Yokohama, M. Asobe, A. Yokoo, H. Itoh, and T. Kaino, "All-optical switching by use of cascading of phase-matched sum-frequency generation and difference-frequency generation processes," J. Opt. Soc. Am. B 14, 3368 (1997). [CrossRef]
  22. L. E. Myers and W. R. Bosenberg, "Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators," IEEE J. Quantum Electron. 33, 1663 (1997). [CrossRef]
  23. K. El Hadi, M. Sundheimer, P. Aschieri, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, F. Laurell, "Quasi-phase-matched parametric interactions in proton-exchanged lithium niobate waveguides," J. Opt. Soc. Am. B 14, 3197 (1997). [CrossRef]
  24. M. Fujimura, T. Suhara, and H. Nishihara, "Periodically domain-inverted LiNbO3 for waveguide auasi-phase-matched nonlinear optic wavelength conversion devices," Bull. Mater. Sci. 22, 413 (1999). [CrossRef]
  25. S. Zhu, Y. Zhu, and N. Ming, "Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice," Science 278, 843 (1997). [CrossRef]
  26. C. Zhang, H. Wei, Y. Zhu, H. Wang, S. Zhu and N. Ming, "Third-harmonic generation in a general two-component quasi-periodic optical superlattice," Opt. Lett. 26, 899 (2001). [CrossRef]
  27. C. J. K. Virmani, Plasma Phys. 15, 1039 (1973). [CrossRef]
  28. G. Blau, M. Cairone, P. A. Chollet, F. Kajzar, "Electro-optic modulation and second-harmonic generation through grating-induced resonant excitation of guided modes," Proc. SPIE 2852, 237 (1996). [CrossRef]
  29. N. O’Brien, M. Missey, P. Powers, V. Dominic, and K. L. Schepler, "Electro-optical spectral tuning in a continuous-wave, asymmetric-duty-cycle, periodically poled LiNbO3 optical parametric oscillator," Opt. Lett. 24, 1750 (1999). [CrossRef]
  30. K. Chang, A. Chiang, T. Lin, B. Wong, Y. Chen, and Y. Huang, "Simultaneous wavelength conversion and amplitude modulation in a monolithic periodically-poled lithium niobate," Opt. Commun. 203, 163 (2002). [CrossRef]
  31. Y. Chen, F. Fan, Y. Lin, Y. Huang, J. Shy, Y. Lan, and Y. Chen, "Simultaneous amplitude modulation and wavelength conversion in an asymmetric-duty-cycle periodically poled lithium niobate," Opt. Commun. 223, 417 (2003). [CrossRef]
  32. F. Xu, J. Liao, X. Zhang, J. He, H. Wang, N. Ming, "Complete conversion of sum-frequency generation enhanced by controllable linear gratings induced by an electro-optic effect in a periodic optical superlattice," Phys. Rev. A 68, 033808 (2003). [CrossRef]
  33. F. Xu, J. Liao, C. Guo, J. He, H. Wang, S. Zhu, Z. Wang, Y. Zhu, N. Ming, "Highly efficient direct third-harmonic generation based on control of the electro-optic effect in quasi-periodic optical superlattices," Opt. Lett. 28, 429 (2003). [CrossRef] [PubMed]
  34. C. Huang, Q. Wang, Y. Zhu, "Cascaded frequency doubling and electro-optic coupling in a single optical superlattice," Appl. Phys. B 80, 741 (2005). [CrossRef]
  35. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowski, and N. Gisin, "Highly efficient photo-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37, 26 (2001). [CrossRef]
  36. W. She, W. Lee, "Wave coupling theory of linear electrooptic effect," Opt. Commun. 195, 303 (2001). [CrossRef]
  37. G. Zheng, H. Wang, W. She, "Wave coupling theory of quasi-phase-matched linear electro-optic effect," Opt. Exp. 14, 5535 (2006). [CrossRef]
  38. Y. Lu, Z. Wan, Q. Wang, Y. Xi, and N. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719 (2000). [CrossRef]
  39. C. Huang, Y. Wang, Y. Zhu, "Effect of electro-optic modulation on coupled quasi-phase-matched frequency conversion," Appl. Opt. 44, 4980 (2005). [CrossRef] [PubMed]
  40. A. Yariv, Quantum Electronics (John Wiley & Sons, Inc., New York, 1975) Chaps.16-17.
  41. G. Luo, S. Zhu, J. He, Y. Zhu, H. Wang, Z. Liu, C. Zhang, and N. Ming, "Simultaneously efficient blue and red light generations in a periodically poled LiTaO3," Appl. Phys. Lett. 78, 3006 (2001). [CrossRef]
  42. Keren Fradkin-Kashi and Ady Arie, "Multiple-wavelength quasi-phase-matched nonlinear interactions," IEEE J. Quantum Electron. 35, 1649 (1999). [CrossRef]
  43. G. J.  Edwards and M.  Lawrence, "A temperature-dependent dispersion equation for congruently grown lithium niobate," Opt. and Quant. Electron. 16, 373 (1984). [CrossRef]
  44. L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge University Press, 1995) p.1071.
  45. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, "Violation of Bell inequalities by photons more than 10 km apart, " Phys. Rev. Lett. 81, 3563 (1998). [CrossRef]
  46. Y. H. Chen and Y. C. Huang, "Actively Q-switched Nd:YVO4 laser using an electro-optic periodically poled lithium niobate crystal as a laser Q-switch," Opt. Lett. 28, 1460 (2003). [CrossRef] [PubMed]
  47. K. S. Abedin, T. Tsuritani, M. Sato, H. Ito, K. Shimamura, and T. Fukuda, "Integrated electro-optic Q switching in a domain-inverted Nd:LiTaO3," Opt. Lett. 20, 1985 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited