OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 13 — Jun. 25, 2007
  • pp: 8300–8308

Design of an ultracompact MMI wavelength demultiplexer in slot waveguide structures

Jinbiao Xiao, Xu Liu, and Xiaohan Sun  »View Author Affiliations

Optics Express, Vol. 15, Issue 13, pp. 8300-8308 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (311 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on a multimode interference (MMI) coupler in slot waveguide structures, an ultracompact wavelength demultiplexer operating at 1.30 and 1.55μm wavelengths is proposed and designed by using a full-vector mapped Galerkin mode solver and a modified three-dimensional full-vector beam propagation method. The tapered waveguide structures are applied to connect the input/output channels and the MMI section for reducing excess loss. The modal characteristics of the slot waveguides are analyzed and the evolution of the injected field in whole device are demonstrated. The results show that a MMI section of 119.8μm in length, which is only 27.5% length of that of the MMI coupler by using conventional rib waveguides, is achieved with the contrasts of 26.03 and 28.14dB at wavelengths 1.30 and 1.55μm, respectively, and the insertion losses are below 0.2dB at both wavelengths.

© 2007 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

Original Manuscript: May 9, 2007
Revised Manuscript: June 11, 2007
Manuscript Accepted: June 11, 2007
Published: June 18, 2007

Jinbiao Xiao, Xu Liu, and Xiaohan Sun, "Design of an ultracompact MMI wavelength demultiplexer in slot waveguide structures," Opt. Express 15, 8300-8308 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. C. A. Brackett, "Dense wavelength division multiplexing networks: Principles and applications," IEEE J. Sel. Areas Commun. 8, 948-964 (1990). [CrossRef]
  2. N. Goto and G. L. Yip, "Y-branch wavelength multi-demultiplexer for λ=1.30μm and 1.55μm," Electron. Lett. 26, 102-103 (1990). [CrossRef]
  3. A. Tervonen, P. Poyhonen, S. Honkanen, and M. Tahkokorpi, "A guided-wave Mach-Zehnder interferometer structure for wavelength multiplexing," IEEE Photon. Technol. Lett. 3, 516-518 (1991). [CrossRef]
  4. K. C. Lin and W. Y. Lee, "Guided-wave 1.30/1.55μm wavelength division multiplexer based on multimode interference," Electron. Lett. 32, 1259-1261 (1996). [CrossRef]
  5. B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, and X. Wang, "Low-loss 1×2 multimode interference wavelength demultiplexer in silicon-germanium alloy," IEEE Photon. Technol. Lett. 11, 575-577 (1999). [CrossRef]
  6. S. L. Tsao, H. C. Guo, and C. W. Tsai, "A novel 1×2 single-mode 1300/1550nm wavelength division multiplexer with output facet-tilted MMI waveguide," Opt. Commun. 232, 371-379 (2004). [CrossRef]
  7. L. B. Soldano and E. C. M. Pennings, "Optical multimode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995). [CrossRef]
  8. R. Soref, "The past, present, and future of silicon photonics," IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687 (2006). [CrossRef]
  9. B. Jalali and S. Fathpour, "Silicon photonics," J. Lightwave Technol. 24, 4600-4615 (2006). [CrossRef]
  10. V. R. Almeida, Q. Xu, C. A. barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004). [CrossRef] [PubMed]
  11. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining in nanometer-size low-refractive index material," Opt. Lett. 29, 1626-1628 (2004). [CrossRef] [PubMed]
  12. T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K. Y. Jen, and A. Scherer, "Optical modulation and detection in slotted silicon waveguides," Opt. Express 13, 5216-5226 (2005). [CrossRef] [PubMed]
  13. C. A. Barrios and M. Lipson, "electrically driven silicon resonant light emitting device based on slot-waveguide," Opt. Express 13, 10092-10101 (2005). [CrossRef] [PubMed]
  14. T. Fujisawa and M. Koshiba, "Polarization-independent optical directional coupler based on slot waveguides," Opt. Lett. 31, 56-58 (2006). [CrossRef] [PubMed]
  15. T. Fujisawa and M. Koshiba, "Theoretical Investigation of ultrasmall polarization-insensitive 1×2 multimode interference waveguides based on sandwiched structures," IEEE Photon. Technol. Lett. 18, 1246-1248 (2006). [CrossRef]
  16. T. Fujisasw and M. Koshiba, "All-optical logic gates based on nonlinear slot-waveguide coupler," J. Opt. Soc. Am. B 23, 684-691(2006). [CrossRef]
  17. F. Dell’Olio and V. M. N. Passaro, "Optical sensing by optimized silicon slot waveguides," Opt. Express 15, 4977-4993 (2007). [CrossRef] [PubMed]
  18. J. Xiao, X. Sun, and M. Zhang, "Vectorial analysis of optical waveguides by the mapped Galerkin method based on E fields," J. Opt. Soc. Am. B 21, 798-805 (2004). [CrossRef]
  19. J. Xiao and X. Sun, "A modified full-vectorial finite-difference beam propagation method based on H-fields for optical waveguides with step-index profiles," Opt. Commun. 266, 505-511 (2006). [CrossRef]
  20. W. P. Huang and C. L. Xu, "Simulation of three-dimensional optical waveguides by a full-vector beam propagation method," IEEE J. Quantum Electron. 29, 2639-2649 (1993). [CrossRef]
  21. G. R. Hadley, "Transparent boundary condition for the beam propagation method," IEEE J. Quantum Electron. 28, 363-370 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited