OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 13 — Jun. 25, 2007
  • pp: 8360–8370

A moderate-spectral-resolution transmittance model based on fitting the line-by-line calculation

Heli Wei, Xiuhong Chen, Ruizhong Rao, Yingjian Wang, and Ping Yang  »View Author Affiliations

Optics Express, Vol. 15, Issue 13, pp. 8360-8370 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (900 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A fast narrowband transmittance model, referred to as the Fast Fitting Transmittance Model (FFTM), is developed based on rigorous line-by-line (LBL) calculations. Specifically, monochromatic transmittances are first computed from a LBL model in a spectral region from 1 to 25000 cm-1 for various pressures and temperatures ranging from 0.05 hPa to 1100 hPa and from 200 K to 320 K, respectively. Subsequently, the monochromatic transmittances are averaged over a spectral interval of 1 cm-1 to obtain narrowband transmittances that are then fitted to various values of absorber amount. A database of fitting coefficients is then created that can be used to compute narrowband transmittances for an arbitrary atmospheric profile. To apply the FFTM to an inhomogeneous atmosphere, the Curtis-Godson (C-G) approximation is employed to obtain the weighted effective coefficients. The present method is validated against the LBLRTM and also compared with the high-spectral-resolution measurements acquired by the Atmospheric Infrared Sounder (AIRS) and High-resolution Interferometer Sounder (HIS). With a spectral resolution of 1 cm-1 and a wide spectral coverage, the FFTM offers a unique combination of numerical efficiency and considerable accuracy for computing moderate- to high-spectral-resolution transmittances involved in radiative transfer simulations and remote sensing applications.

© 2007 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(300.1030) Spectroscopy : Absorption
(300.6320) Spectroscopy : Spectroscopy, high-resolution

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: March 15, 2007
Revised Manuscript: May 18, 2007
Manuscript Accepted: May 30, 2007
Published: June 19, 2007

Heli Wei, Xiuhong Chen, Ruizhong Rao, Yingjian Wang, and Ping Yang, "A moderate-spectral-resolution transmittance model based on fitting the line-by-line calculation," Opt. Express 15, 8360-8370 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. S. A. Clough and M. J. Iacono, "Line-by-line calculations of atmospheric fluxes and cooling rates: Part II: Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons," J. Geophys. Res. 100, 16519-16535 (1995). [CrossRef]
  2. D. P. Kratz, G. M. Mlynczak, C. J. Mertens,  et al., "An inter-comparison of far-infrared line-by-line radiative transfer models," J. Quant. Spectrosc. Radiat. Transf. 90, 323-341 (2005). [CrossRef]
  3. L. L. Strow, S. E. Hannon, S. Souza-Machado, H. E. Motteler, and D. C. Tobin, "An overview of the AIRS radiative transfer model," IEEE Trans. Geosci. Remote Sens. 41, 303-313 (2003). [CrossRef]
  4. L. Moy, D. C. Tobin, P. Delst, and H. Woolf, "Clear sky forward model development for GIFTS," (2004), http://ams.confex.com/ams/pdfpapers/71971>pdf.
  5. L. M. McMillin, T. J. Kleespies, and L. J. Crone, "Atmospheric transmittance of an absorbing gas. 5. Improvements to the OPTRAN approach," Appl. Opt. 34, 8396-8399 (1995). [CrossRef] [PubMed]
  6. R. W. Sunders, M. Matricardi, and P. Brunel, "An improved fast radiative transfer model for assimilation of satellite radiance observations," Q. J. R. Meterol. Soc.  125, 1407-1425 (1999).
  7. Q. Fu and K. N. Liou, "On the correlated K-distribution method for radiative transfer in non-homogeneous atmospheres," J. Atmos. Sci. 49, 2139-2156 (1992). [CrossRef]
  8. D. P. Kratz and F. G. Rose, "Accounting for molecular absorption within the spectral range of the CERES window channel," J. Quant. Spectrosc. Radiat. Transf. 61, 83-95 (1999). [CrossRef]
  9. J. L. Moncet, G. Uymin, and H. E. Snell, "Atmospheric radiance modeling using the optimal spectral sampling (OSS) method," Proc. SPIE 5425, 368-374 (2004). [CrossRef]
  10. X. Liu, W. L. Smith, D. K. Zhou, and A. Larar, "Principal component-based radiative transfer model for hyperspectral sensors: theoretical concept," Appl. Opt. 45, 201-209 (2006). [CrossRef] [PubMed]
  11. S. A. Clough, M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, "Atmospheric radiative transfer modeling: a summary of the AER codes," J. Quant. Spectrosc. Radiat. Transf. 91, 233-244 (2005). [CrossRef]
  12. L. S. Rothmana, D. A. Jacquemarta, A. Barbeb,  et al., "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer. 96, 139-204 (2005). [CrossRef]
  13. Q. Fu and K. N. Liou, "A three-parameter approximation for radiative transfer nonhomogeneous atmosphere: application to the O3 9.6 μm band," J. Geophys. Res. 97, 13051-13058 (1992). [CrossRef]
  14. L. S. Bernstein, A. Berk, P. K. Acharya,  et al., "Very narrow band model calculations of atmospheric flux and cooling rates," J. Atmos. Sci. 53, 2887-2904 (1996). [CrossRef]
  15. D. C. Tobin, F. A. Best, P. D. Brown, S. A. Clough, R. G. Dedecker, R. G. Ellingson, R. K. Garcia, H. B. Howell, R. O. Knuteson, E. J. Mlawer, H. E. Revefrcomb, J. F. Short, P. F. W. van Delst, V. P. Walden, "Downwelling spectral radiance observations at the SHEBA ice station: water vapor continuum measurements from 17 -26 μm,"J. Geophys. Res. 104, 2081-2092 (1999). [CrossRef]
  16. J. A. Curry, P. V. Hobbs, M. D. King,  et al., "FIRE arctic clouds experiment," Bull. Amer. Meteorol. Soc. 81, 5-29 (2000). [CrossRef]
  17. H. L. Wei, P. Yang, J. Li, B. A. Baum, H. L. Huang, S. Platnick, Y. X. Hu, and L. L. Strow, "Retrieval of ice cloud optical thickness from Atmospheric Infrared Sounder (AIRS) measurements," IEEE Trans. Geosci. Remote Sens. 42, 2254-2267 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited