OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 14 — Jul. 9, 2007
  • pp: 8737–8744

Infrared transmission resonances in double-layered, complementary-structure metallic gratings

Jingyu Zhang, Shuang Zhang, Dong Li, Alexander Neumann, Chris Hains, Andrew Frauenglass, and S. R. J. Brueck  »View Author Affiliations


Optics Express, Vol. 15, Issue 14, pp. 8737-8744 (2007)
http://dx.doi.org/10.1364/OE.15.008737


View Full Text Article

Enhanced HTML    Acrobat PDF (408 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A double-layered metallic grating (metal-dielectric-metal) with a complementary capacitive (isolated discs) / inductive (connected film with apertures) structure exhibits multiple infrared transmission resonances peaks with up to 70% at wavelength ranges corresponding to local modes for geometric dimensions less than a wavelength. The period, dielectric thickness, refractive index and unit cell size of the periodic structure modulate the local mode positions and amplitudes. The electromagnetic field distribution and energy flow in the structure explain the relation of transmission resonance, local modes, and distributed surface plasma wave modes.

© 2007 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.2770) Other areas of optics : Gratings

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 9, 2007
Revised Manuscript: June 22, 2007
Manuscript Accepted: June 23, 2007
Published: June 27, 2007

Citation
Jingyu Zhang, Shuang Zhang, Dong Li, Alexander Neumann, Chris Hains, Andrew Frauenglass, and S. R. Brueck, "Infrared transmission resonances in double-layered, complementary-structure metallic gratings," Opt. Express 15, 8737-8744 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-14-8737


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. R. Brown and O. B. McMahon, "Large electromagnetic stop bands in metallodielectric photonic Crystals," Appl. Phys. Lett. 67, 2138-2140 (1995). [CrossRef]
  2. J. B. Pendry, "A chiral route to negative refraction," Science 306, 1353-1355 (2004). [CrossRef] [PubMed]
  3. S.  Zhang, W.  Fan, N. C.  Panoiu, K. J.  Malloy, R. M.  Osgood, and S. R. J.  Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005). [CrossRef] [PubMed]
  4. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap," Phys. Rev. B62, 10696-10705 (2000).
  5. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  6. W. Fan, S. Zhang, B. Minhas, K. J. Malloy, and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902 (2005). [CrossRef] [PubMed]
  7. W. Fan, S. Zhang, K. J. Malloy and S. R. J. Brueck, "Enhanced mid-infrared transmission through nanoscale metallic coaxial-aperture arrays," Opt. Exp. 13, 4406-4413 (2005). [CrossRef]
  8. W.  Fan, S.  Zhang, N. C. Paniou, A.  Abdenour, S.  Krishna, R. M.  Osgood Jr, K. J.  Malloy and S. R. J.  Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006). [CrossRef]
  9. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett. 91, 183901 (2003). [CrossRef] [PubMed]
  10. S. R. J. Brueck, "Interferometric lithography - from periodic arrays to arbitrary patterns," Microelectron. Eng. 42, 145-148 (1998). [CrossRef]
  11. W. Zietkowski and M. Zaluzny, "Propagation characteristics of surface-plasmon waveguides operating in the mid- and far infrared: Nonperturbative approach," J. Appl. Phys. 96, 6029-6034 (2004). [CrossRef]
  12. D. Sarid, "Long_range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981). [CrossRef]
  13. E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969). [CrossRef]
  14. J. Bellessa, C. Bonnand, J. C. Plenet and J. Mugnier, "Strong coupling between surface plasmons and excitons in an organic semiconductor," Phys. Rev. Lett. 93, 036404 (2004). [CrossRef] [PubMed]
  15. B. K. Minhas, W. Fan, K. Agi, S. R. J. Brueck and K. J. Malloy, "Metallic inductive and capacitive grids: theory and experiment," J. Opt. Soc. Am. A 19, 1352-1359 (2002). [CrossRef]
  16. L. Li "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," J. Opt. Soc. Am. A 13, 1024- 1035 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited