OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 14 — Jul. 9, 2007
  • pp: 8805–8811

Time resolved confocal luminescence investigations on Reverse Proton Exchange Nd:LiNbO3 channel waveguides

E. Martín Rodríguez, D. Jaque, E. Cantelar, F. Cussó, G. Lifante, A.C. Busacca, A.C. Cino, and S. Riva Sanseverino  »View Author Affiliations


Optics Express, Vol. 15, Issue 14, pp. 8805-8811 (2007)
http://dx.doi.org/10.1364/OE.15.008805


View Full Text Article

Enhanced HTML    Acrobat PDF (224 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work we report on the time and spatial resolved fluorescence of Neodymium ions in LiNbO3 channel waveguides fabricated by Reverse Proton Exchange. The analysis of the fluorescence decay curves obtained with a sub-micrometric resolution has evidenced the presence of a relevant fluorescence quenching inside the channel waveguide. From the comparison between diffusion simulations and the spatial dependence of the 4F3/2 fluorescence decay rate we have concluded that the observed fluorescence quenching can be unequivocally related to the presence of H+ ions in the LiNbO3 lattice. Nevertheless, it turns out that Reverse Proton Exchange guarantees a fluorescence quenching level significantly lower than in similar configurations based on Proton Exchange waveguides. This fluorescence quenching has been found to be accompanied by a relevant red-shift of the 4F3/24I9/2 fluorescence band.

© 2007 Optical Society of America

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(160.3380) Materials : Laser materials
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: May 3, 2007
Revised Manuscript: June 25, 2007
Manuscript Accepted: June 26, 2007
Published: June 28, 2007

Citation
E. M. Rodríguez, D. Jaque, E. Cantelar, F. Cussó, G. Lifante, A.C. Busacca, A. Cino, and S. R. Sanseverino, "Time resolved confocal luminescence investigations on Reverse Proton Exchange Nd:LiNbO3 channel waveguides," Opt. Express 15, 8805-8811 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-14-8805


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Arizmendi, "Photonic applications of Lithium Niobate," Phys. Status Solidi A 201, 253-283 (2004). [CrossRef]
  2. P. Baldi, M. De Micheli, K. El Hadi, A. C. Cino, P. Aschieri, and D. B. Ostrowsky, "Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters," Opt. Eng. 37, 1193-1202 (1998). [CrossRef]
  3. J. L. Jackel, C. E. Rice, and J. J. Veselka, "Proton exchange for high-index waveguides in LiNbO3," Appl. Phys. Lett. 41, 607-608 (1982). [CrossRef]
  4. E. Lallier, J. P. Pocholle, M. Papuchon, C. Grezes-Besset, E. Pelletier, M. De Micheli, M. J. Li, Q. He and D. B. Ostrowsky, "Laser oscillation of single-mode channel waveguide in Nd: MgO:LiNbO3," Electron. Lett. 25, 1491-1492 (1989). [CrossRef]
  5. J. L. Jackel, C. E. Rice, and J. J. Veselka, "Proton exchange for highindex waveguides in LiNbO3," Appl. Phys. Lett. 41, 607-608 (1982). [CrossRef]
  6. E. Lallier. "Lasers guides dóndes dans le Niobate de Lithium dope Neodyme," Universite de Paris-Sud, PhD Thesis (1992).
  7. J. L. Jackel, and J. J. Johnson, "Reverse exchange method for burying proton exchanged waveguides," Electron. Lett. 27, 1360-1361 (1991). [CrossRef]
  8. Y. N. Korkishko, V. A. Fedorov, T. M. Morozova, F. Caccavale, F. Gonella, and F. Segato, "Riverse proton exchange for buried waveguides in LiNbO3," J. Opt. Soc. Am. A 15, 1838-1842 (1998). [CrossRef]
  9. A. Di Lallo, C. Conti, A. Cino, and G. Assanto, "Efficient Frequency Doubling in Reverse Proton Exchanged Lithium Niobate waveguides," IEEE Photon. Technol. Lett. 13, 323-325, (2001). [CrossRef]
  10. J. Olivares and J. M. Cabrera. "Guided modes with ordinary refractive index in proton exchanged LiNbO3 waveguides," Appl. Phys. Lett. 62, 2468-2470 (1993). [CrossRef]
  11. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer and M. Fujimura. "Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium Niobate," Opt. Lett. 27, 179-181 (2002). [CrossRef]
  12. M. Domenech, G. Lifante and F. Cussó, A. Parisi, A. C. Cino and S. Riva Sanseverino, "Fabrication and characterisation of reverse proton exchange optical waveguides in Neodymium doped lithium niobate crystals," Mater. Sci. Forum 480-481, 429-436 (2005).
  13. G. Lifante, E. Cantelar, F. Cussó, M. Domenech, A. C. Busacca, A. C. Cino and S. Riva Sanseverino "Imaginary distance BPM as an efficient tool for modelling optical waveguides fabrication by ion diffusion," Proc. OWTNM’06, Varese, Italy (2006).
  14. C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell. "Thermal lens study of the OH-influence on the fluorescence efficiency of Yb3+-doped phosphate glasses," Appl. Phys. Lett. 86, 071911 (2005). [CrossRef]
  15. U. R. Rodríguez Mendoza, A. Ródenas, D. Jaque, I. R. Martín, F. Lahoz and V. Lavín "High pressure luminescence in Nd doped LiNbO3 crystals," High Press. Res. 26, 341-343 (2006). [CrossRef]
  16. D. Jaque, E. Cantelar and G. Lifante "Lattice micro-modifications induced by Zn difussion in Nd:LiNbO3 channel waveguides probed by Nd3+ confocal luminescence," Appl. Phys. B. DOI: 10.1007/s00340-007-2692-9 (2007).
  17. B. V. Dierold and C. Sandmann. "Inspection of periodically poled waveguide devices by confocal luminescence microscopy," Appl. Phys. B. 78, 363-366 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited