OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 15 — Jul. 23, 2007
  • pp: 9166–9175

A new mechanism for negative refraction and focusing using selective diffraction from surface corrugation

W. T. Lu, Y. J. Huang, P. Vodo, R. K. Banyal, C. H. Perry, and S. Sridhar  »View Author Affiliations


Optics Express, Vol. 15, Issue 15, pp. 9166-9175 (2007)
http://dx.doi.org/10.1364/OE.15.009166


View Full Text Article

Enhanced HTML    Acrobat PDF (528 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Refraction at a smooth interface is accompanied by momentum transfer normal to the interface. We show that corrugating an initially smooth, totally reflecting, non-metallic interface provides a momentum kick parallel to the surface, which can be used to refract light negatively or positively. This new mechanism of negative refraction is demonstrated by visible light and microwave experiments on grisms (grating-prisms). Single-beam all-angle-negative-refraction is achieved by incorporating a surface grating on a flat multilayered material. This negative refraction mechanism is used to create a new optical device, a grating lens. A plano-concave grating lens is demonstrated to focus plane microwaves to a point image. These results show that customized surface engineering can be used to achieve negative refraction even though the bulk material has positive refractive index. The surface periodicity provides a tunable parameter to control beam propagation leading to novel optical and microwave devices.

© 2007 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(110.2990) Imaging systems : Image formation theory
(160.4670) Materials : Optical materials

ToC Category:
Diffraction and Gratings

History
Original Manuscript: April 17, 2007
Revised Manuscript: June 22, 2007
Manuscript Accepted: July 6, 2007
Published: July 11, 2007

Citation
W. T. Lu, Y. J. Huang, P. Vodo, R. K. Banyal, C. H. Perry, and S. Sridhar, "A new mechanism for negative refraction and focusing using selective diffraction from surface corrugation," Opt. Express 15, 9166-9175 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9166


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Veselago, "The electrodynamics of substances with simultaneously negative values of ∑ and μ," Sov. Phys. Usp. 10, 509-514 (1968);V. Veselago V. and E. E. Narimanov, "The left hand of brightness: past, present and future of negative index materials," Nat. Mat. 5, 759-762 (2006). [CrossRef]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  3. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003). [CrossRef] [PubMed]
  4. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Negative refraction by photonic crystals," Nature 423, 604-605 (2003). [CrossRef] [PubMed]
  5. P. V. Parimi, W.T. Lu, P. Vodo, J. Sokoloff, J.S. Derov, and S. Sridhar "Negative refraction and left-handed electromagnetism in microwave photonic crystals," Phys. Rev. Lett. 92, 127401 (2004). [CrossRef] [PubMed]
  6. P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature 426, 404-404 (2003). [CrossRef] [PubMed]
  7. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996). [CrossRef] [PubMed]
  8. J. B. Pendry, A. J. Holden, D. J. Robbins, andW. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  9. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004). [CrossRef] [PubMed]
  10. V. M. Shalaev, "Optical negative-index metamaterials," Nat. Photonics 1, 41-48 (2007). [CrossRef]
  11. J. D. Joannopoulos, R. Meade, and J. N. Winn, Photonic Crystals: Modeling the Flow of Light (Princeton Univ. Press, Princeton, NJ, 1995).
  12. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000). [CrossRef]
  13. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002). [CrossRef]
  14. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  15. W. T. Lu and S. Sridhar, "Flat lens without optical axis: Theory of imaging," Opt. Express 13, 10673-10680 (2005). [CrossRef] [PubMed]
  16. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Subwavelength imaging in photonic crystals," Phys. Rev. B 68, 045115 (2003). [CrossRef]
  17. M. Neviere and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (Marcel Dekker, Inc. 2003). p. 3.
  18. W. T. Lu and S. Sridhar, unpublished.
  19. P. Vodo, P. V. Parimi,W. T. Lu, and S. Sridhar, "Focusing by plano-concave lens using negative refraction," Appl. Phys. Lett. 86, 201108 (2005). [CrossRef]
  20. P. Vodo, W. T. Lu, Y. Huang, and S. Sridhar, "Negative refraction and plano-concave lens focusing in onedimensional photonic crystals," Appl. Phys. Lett. 89, 084104 (2006). [CrossRef]
  21. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998). [CrossRef] [PubMed]
  22. D. R. Fredkin and A. Ron, "Effectively left-handed (negative index) composite material," Appl. Phys. Lett. 81, 1753-1755 (2002). [CrossRef]
  23. A. Alú and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency," IEEE Trans. Antennas Propag. 51, 2558-2571 (2003). [CrossRef]
  24. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059 (1987); "Photonic band-gap structures," J. Opt. Soc. Am. B 10, 283 (1993). [CrossRef] [PubMed]
  25. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486- 2489 (1987). [CrossRef] [PubMed]
  26. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998). [CrossRef]
  27. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science 289, 415-419 (2000). [CrossRef] [PubMed]
  28. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A threedimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004). [CrossRef] [PubMed]
  29. Y. J. Huang, W. T. Lu, and S. Sridhar, "Alternative approach to all-angle negative refraction in two-dimensional photonic crystals," preprint: cond-mat/0703733 (2007).
  30. E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, Inc. 1997).
  31. E. Noponen, Electromagnetic Theory of Diffractive Optics (PhD thesis, Helsinki Univ. of Technology, Espoo, Finland, 1994).
  32. T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, "Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability," Phys. Rev. Lett. 97, 073905 (2006). [CrossRef] [PubMed]
  33. D. R. Smith, P. M. Rye, J. J. Mock, D. C. Vier, and A. F. Starr, "Enhanced diffraction from a grating on the surface of a negative-index metamaterial," Phys. Rev. Lett. 93, 137405 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited