OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 15 — Jul. 23, 2007
  • pp: 9205–9221

Ultrafast all-optical chalcogenide glass photonic circuits

Vahid G. Ta’eed, Neil J. Baker, Libin Fu, Klaus Finsterbusch, Michael R.E. Lamont, David J. Moss, Hong C. Nguyen, Benjamin J. Eggleton, Duk Yong Choi, Steven Madden, and Barry Luther-Davies  »View Author Affiliations


Optics Express, Vol. 15, Issue 15, pp. 9205-9221 (2007)
http://dx.doi.org/10.1364/OE.15.009205


View Full Text Article

Enhanced HTML    Acrobat PDF (892 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Chalcogenide glasses offer large ultrafast third-order nonlinearities, low two-photon absorption and the absence of free carrier absorption in a photosensitive medium. This unique combination of properties is nearly ideal for all-optical signal processing devices. In this paper we review the key properties of these materials, outline progress in the field and focus on several recent highlights: high quality gratings, signal regeneration, pulse compression and wavelength conversion.

© 2007 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Nonlinear Optics for Functional Devices and Applications

History
Original Manuscript: May 4, 2007
Revised Manuscript: July 6, 2007
Manuscript Accepted: July 7, 2007
Published: July 12, 2007

Virtual Issues
Focus Serial: Frontiers of Nonlinear Optics (2007) Optics Express

Citation
Vahid Ta'eed, Neil J. Baker, Libin Fu, Klaus Finsterbusch, Michael R. E. Lamont, David J. Moss, Hong C. Nguyen, Benjamin J. Eggleton, Duk-Yong Choi, Steve Madden, and Barry Luther-Davies, "Ultrafast all-optical chalcogenide glass photonic circuits," Opt. Express 15, 9205-9221 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9205


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. R. Hilton, "Optical properties of chalcogenide glass," J. Non-Cryst Solids 2, 28-39 (1970). [CrossRef]
  2. J. S. Sanghera, L. B. Shaw, L. E. Busse, V. Q. Nguyen, P. C. Pureza, B. C. Cole, B. B. Harbison, I. D. Aggarwal, R. Mossadegh, F. Kung, D. Talley, D. Roselle, and R. Miklos, "Development and infrared applications of chalcogenide glass optical fibers," Fiber Integr. Opt. 19, 251-274 (2000). [CrossRef]
  3. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, "Applications of chalcogenide glass optical fibers," Comptes Rendus Chimie 5, 873-883 (2002). [CrossRef]
  4. M. Asobe, H. Itoh, T. Miyazawa, and T. Kanamori, "Efficient and Ultrafast All-Optical Switching Using High Delta-N, Small Core Chalcogenide Glass-Fiber," Electron. Lett. 29, 1966-1968 (1993). [CrossRef]
  5. L. B. Fu, M. Rochette, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber," Opt. Express 13, 7637-7644 (2005). [CrossRef] [PubMed]
  6. V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, "Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides," IEEE J. Sel. Top. Quantum Electron. 12, 360-370 (2006). [CrossRef]
  7. V. G. Ta'eed, M. Shokooh-Saremi, L. B. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, "Integrated all-optical pulse regenerator in chalcogenide waveguides," Opt. Lett. 30, 2900-2902 (2005). [CrossRef] [PubMed]
  8. V. G. Ta'eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, "All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides," Opt. Express 14, 11242-11247 (2006). [CrossRef] [PubMed]
  9. V. G. Ta'eed, L. B. Fu, M. Pelusi, M. Rochette, I. C. M. Littler, D. J. Moss, and B. J. Eggleton, "Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber," Opt. Express 14, 10371-10376 (2006). [CrossRef] [PubMed]
  10. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, "Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers," J. Opt. Soc. Am. B 21, 1146-1155 (2004). [CrossRef]
  11. K. S. Abedin, "Single-frequency Brillouin lasing using singlemode As2Se3 chalcogenide fiber," Opt. Express 14, 4037-4042 (2006). [CrossRef] [PubMed]
  12. L. B. Fu, A. Fuerbach, I. C. M. Littler, and B. J. Eggleton, "Efficient optical pulse compression using chalcogenide single-mode fibers," Appl. Phys. Lett. 88, 081116 (2006). [CrossRef]
  13. K. Y. Song, K. S. Abedin, K. Hotate, M. G. Herraez, and L. Thevenaz, "Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber," Opt. Express 14, 5860-5865 (2006). [CrossRef] [PubMed]
  14. A. Zakery, and S. R. Elliott, "Optical properties and applications of chalcogenide glasses: a review," J. Non-Cryst Solids 330, 1-12 (2003). [CrossRef]
  15. K. O. Hill, B. Malo, F. Bilodeau, and D. C. Johnson, "Photosensitivity in Optical Fibers," Annual Review of Materials Science 23, 125-157 (1993). [CrossRef]
  16. I. D. Aggarwal, and J. S. Sanghera, "Development and applications of chalcogenide glass optical fibers at NRL," J. Optoelectron. Adv. M. 4, 665-678 (2002).
  17. L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. N. Nguyen, N. Traynor, and A. Monteville, "Fabrication of complex structures of Holey Fibers in chalcogenide glass," Optics Express 14, 1280-1285 (2006). [CrossRef] [PubMed]
  18. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, "Chalcogenide holey fibres," Electron. Lett. 36, 1998-2000 (2000). [CrossRef]
  19. Y. L. Ruan, W. T. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, "Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching," Opt. Express 12, 5140-5145 (2004). [CrossRef] [PubMed]
  20. J. A. Savage, "Optical-Properties of Chalcogenide Glasses," J. Non-Cryst Solids 47, 101-116 (1982). [CrossRef]
  21. A. B. Seddon, "Chalcogenide Glasses - a Review of Their Preparation, Properties and Applications," J. Non-Cryst Solids 184, 44-50 (1995). [CrossRef]
  22. M. Yamane, and Y. Asahara, Glasses for photonics (University Press, Cambridge, 2000). [CrossRef]
  23. S. R. Elliott, "A Unified Model for Reversible Photostructural Effects in Chalcogenide Glasses," J. Non-Cryst Solids 81, 71-98 (1986). [CrossRef]
  24. P. Klocek, ed. Handbook of infrared optical materials (Marcel Dekker, New York, 1991).
  25. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001).
  26. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006). [CrossRef] [PubMed]
  27. S. M. Song, and S. Y. Choi, "Spin-coated Ge-Se-Te-Si3N4-CdS chalconitride thin film," J. Non-Cryst Solids 291, 50-55 (2001). [CrossRef]
  28. T. Kohoutek, T. Wagner, M. Vlcek, M. Vlcek, and M. Frumar, "Spin-coated As33S67-xSex thin films: the effect of annealing on structure and optical properties," J. Non-Cryst Solids 352, 1563-1566 (2006). [CrossRef]
  29. T. Wagner, T. Kohoutek, M. Vlcek, M. Vlcek, M. Munzar, and M. Frumar, "Spin-coated Ag-x(As0.33S0.67)(100-x) films: preparation and structure," J. Non-Cryst Solids 326, 165-169 (2003). [CrossRef]
  30. G. C. Chern, and I. Lauks, "Spin-Coated Amorphous-Chalcogenide Films," J. Appl. Phys. 53, 6979-6982 (1982). [CrossRef]
  31. J. M. Gonzalez-Leal, R. Prieto-Alcon, M. Stuchlik, M. Vlcek, S. R. Elliott, and E. Marquez, "Determination of the surface roughness and refractive index of amorphous As40S60 films deposited by spin coating," Opt. Mater. 27, 147-154 (2004). [CrossRef]
  32. A. K. Mairaj, R. J. Curry, and D. W. Hewak, "Chalcogenide glass thin films through inverted deposition and high velocity spinning," Electron. Lett. 40, 421-422 (2004). [CrossRef]
  33. K. E. Youden, T. Grevatt, R. W. Eason, H. N. Rutt, R. S. Deol, and G. Wylangowski, "Pulsed-Laser Deposition of Ga-La-S Chalcogenide Glass Thin-Film Optical Wave-Guides," Appl. Phys. Lett. 63, 1601-1603 (1993). [CrossRef]
  34. A. V. Rode, A. Zakery, M. Samoc, R. B. Charters, E. G. Gamaly, and B. Luther-Davies, "Laser-deposited As2S3 chalcogenide films for waveguide applications," Appl. Surf. Sci. 197, 481-485 (2002). [CrossRef]
  35. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, and R. Vallee, "Direct femtosecond laser writing of waveguides in As2S3 thin films," Opt. Lett. 29, 748-750 (2004). [CrossRef] [PubMed]
  36. T. V. Galstyan, J. F. Viens, A. Villeneuve, K. Richardson, and M. A. Duguay, "Photoinduced self-developing relief gratings in thin film chalcogenide As2S3 glasses," Journal of Lightwave Technology 15, 1343-1347 (1997). [CrossRef]
  37. A. Saliminia, A. Villeneuve, T. V. Galstyan, S. LaRochelle, and K. Richardson, "First- and second-order Bragg gratings in single-mode planar waveguides of chalcogenide glasses," Journal of Lightwave Technology 17, 837-842 (1999). [CrossRef]
  38. K. Tanaka, N. Toyosawa, and H. Hisakuni, "Photoinduced Bragg Gratings in As2s3 Optical Fibers," Opt. Lett. 20, 1976-1978 (1995). [CrossRef] [PubMed]
  39. R. Vallee, S. Frederick, K. Asatryan, M. Fischer, and T. Galstian, "Real-time observation of Bragg grating formation in As2S3 chalcogenide ridge waveguides," Opt. Commun. 230, 301-307 (2004). [CrossRef]
  40. N. Ponnampalam, R. G. DeCorby, H. T. Nguyen, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, "Small core rib waveguides with embedded gratings in As2Se3 glass," Opt. Express 12, 6270-6277 (2004). [CrossRef] [PubMed]
  41. M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, "Fabrication of Bragg grating in chalcogenide glass fibre using the transverse holographic method," Electron. Lett. 32, 1611-1613 (1996). [CrossRef]
  42. S. LaRochelle, P.-Y. Cortes, H. Fathallah, L. A. Rusch, and H. B. Jaafar, "Writing and applications of fiber Bragg grating arrays," SPIE Proceedings 4087, 140-149 (2000). [CrossRef]
  43. P. Y. Cortes, F. Ouellette, and S. LaRochelle, "Intrinsic apodisation of Bragg gratings written using UV-pulse interferometry," Electron. Lett. 34, 396-397 (1998). [CrossRef]
  44. H. G. Frohlich, and R. Kashyap, "Two methods of apodisation of fibre-Bragg-gratings," Opt. Commun. 157, 273-281 (1998). [CrossRef]
  45. M. Shokooh-Saremi, V. G. Ta'eed, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. L. Ruan, and B. Luther-Davies, "High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer," J. Opt. Soc. Am. B 23, 1323-1331 (2006). [CrossRef]
  46. K. Finsterbusch, N. Baker, V. G. Ta'eed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis, "Long-period gratings in chalcogenide (As2S3) rib waveguides," Electronics Letters 42, 1094-1095 (2006). [CrossRef]
  47. D. Pudo, E. C. Magi, and B. J. Eggleton, "Long-period gratings in chalcogenide fibers," Opt. Express 14, 3763-3766 (2006). [CrossRef] [PubMed]
  48. I. C. M. Littler, L. B. Fu, E. C. Magi, D. Pudo, and B. J. Eggleton, "Widely tunable, acousto-optic resonances in Chalcogenide As2Se3 fiber," Opt. Express 14, 8088-8095 (2006). [CrossRef] [PubMed]
  49. B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette, "Long Periodic Superstructure Bragg Gratings in Optical Fibers," Electron. Lett. 30, 1620-1622 (1994). [CrossRef]
  50. N. J. Baker, H. W. Lee, I. C. Littler, C. M. d. Sterke, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, "Sampled Bragg gratings in chalcogenide (As2S3) rib-waveguides," Opt. Express 14, 9451-9459 (2006). [CrossRef] [PubMed]
  51. J. Hubner, D. Zauner, and M. Kristensen, "Strong sampled Bragg gratings for WDM applications," IEEE Photon. Technol. Lett. 10, 552-554 (1998). [CrossRef]
  52. E. M. Vogel, M. J. Weber, and D. M. Krol, "Nonlinear Optical Phenomena in Glass," Physics and Chemistry of Glasses 32, 231-254 (1991).
  53. M. E. Lines, "Oxide Glasses for Fast Photonic Switching - a Comparative-Study," J. Appl. Phys. 69, 6876-6884 (1991). [CrossRef]
  54. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spalter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, "Large Kerr effect in bulk Se-based chalcogenide glasses," Opt. Lett. 25, 254-256 (2000). [CrossRef]
  55. V. Mizrahi, K. W. Delong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, "2-Photon Absorption as a Limitation to All-Optical Switching," Opt. Lett. 14, 1140-1142 (1989). [CrossRef] [PubMed]
  56. R. Jones, H. S. Rong, A. S. Liu, A. W. Fang, M. J. Paniccia, D. Hak, and O. Cohen, "Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 13, 519-525 (2005). [CrossRef] [PubMed]
  57. T. K. Liang, and H. K. Tsang, "Nonlinear Absorption and Raman Scattering in Silicon-on-Insulator Optical Waveguides," IEEE J. Sel. Top. Quantum Electron. 10, 1149-1153 (2004). [CrossRef]
  58. M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003). [CrossRef]
  59. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mu m wavelength," Appl. Phys. Lett. 80, 416-418 (2002). [CrossRef]
  60. N. Sugimoto, H. Kanbara, S. Fujiwara, K. Tanaka, Y. Shimizugawa, and K. Hirao, "Third-order optical nonlinearities and their ultrafast response in Bi2O3-B2O3-SiO2 glasses," J. Opt. Soc. Am. B 16, 1904-1908 (1999). [CrossRef]
  61. H. C. Nguyen, K. Finsterbusch, D. J. Moss, and B. J. Eggleton, "Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre," Electron. Lett. 42, 571-572 (2006). [CrossRef]
  62. M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, "Nonlinear Spectroscopy near Half-Gap in Bulk and Quantum-Well Gaas/Algaas Wave-Guides," J. Appl. Phys. 71, 1927-1935 (1992). [CrossRef]
  63. M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, "Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fibre," Electron. Lett. 32, 1396-1397 (1996). [CrossRef]
  64. O. P. Kulkarni, C. Xia, D. J. Lee, M. Kumar, A. Kuditcher, M. N. Islam, F. L. Terry, M. J. Freeman, B. G. Aitken, S. C. Currie, J. E. McCarthy, M. L. Powley, and D. A. Nolan, "Third order cascaded Raman wavelength shifting in chalcogenide fibers and determination of Raman gain coefficient," Opt. Express 14, 7924-7930 (2006). [CrossRef] [PubMed]
  65. K. S. Abedin, "Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber," Opt. Express 13, 10266-10271 (2005). [CrossRef] [PubMed]
  66. K. Ogusu, H. P. Li, and M. Kitao, "Brillouin-gain coefficients of chalcogenide glasses," J. Opt. Soc. Am. B 21, 1302-1304 (2004). [CrossRef]
  67. D. P. Wei, T. V. Galstian, I. V. Smolnikov, V. G. Plotnichenko, and A. Zohrabyan, "Spectral broadening of femtosecond pulses in a single-mode As-S glass fiber," Opt. Express 13, 2439-2443 (2005). [CrossRef] [PubMed]
  68. P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in Proceedings of European Conference on Optical Communication (ECOC)(Madrid, Spain, 1998), pp. 475-476.
  69. M. Rochette, L. B. Fu, V. Ta'eed, D. J. Moss, and B. J. Eggleton, "2R optical regeneration: An all-optical solution for BER improvement," IEEE J. Sel. Top. Quantum Electron. 12, 736-744 (2006). [CrossRef]
  70. M. R. E. Lamont, L. B. Fu, M. Rochette, D. J. Moss, and B. J. Eggleton, "2R optical regenerator in AS(2)Se(3) chalcogenide fiber characterized by a frequency-resolved optical gating analysis," Appl. Opt. 45, 7904-7907 (2006). [CrossRef]
  71. B. E. Olsson, P. Ohlen, L. Rau, and D. J. Blumenthal, "A simple and robust 40-Gb/s wavelength converter using fiber cross-phase modulation and optical filtering," IEEE Photon. Technol. Lett. 12, 846-848 (2000). [CrossRef]
  72. M. Asobe, "Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching," Opt. Fiber Technol. 3, 142-148 (1997). [CrossRef]
  73. M. R. E. Lamont, C. M. d. Sterke, and B. J. Eggleton, "Dispersion Engineering of Highly Nonlinear As2S3 Waveguides for Parametric Gain and Wavelength Conversion," in Australian Conference on Optical Fiber Technology (ACOFT)(Melbourne, Australia, 2007).
  74. J. S. Sanghera, and I. D. Aggarwal, "Development of chalcogenide glass fiber optics at NRL," J. Non-Cryst Solids 213, 63-67 (1997). [CrossRef]
  75. R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005). [CrossRef]
  76. B. J. Eggleton, R. E. Slusher, C. M. deSterke, P. A. Krug, and J. E. Sipe, "Bragg grating solitons," Physical Review Letters 76, 1627-1630 (1996). [CrossRef] [PubMed]
  77. J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, "Dispersionless slow light using gap solitons," Nature Physics 2, 775-780 (2006). [CrossRef]
  78. C. Grillet, C. Smith, D. Freeman, S. Madden, B. Luther-Davis, E. C. Magi, D. J. Moss, and B. J. Eggleton, "Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires," Opt. Express 14, 1070-1078 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited