OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 15 — Jul. 23, 2007
  • pp: 9450–9457

Photonic crystal circular-shaped microcavity and its uniform cavity-waveguide coupling property due to presence of whispering gallery mode

Po-Tsung Lee, Tsan-Wen Lu, Chia-Ming Yu, and Chung-Chuan Tseng  »View Author Affiliations

Optics Express, Vol. 15, Issue 15, pp. 9450-9457 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (803 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this report, we investigate a photonic crystal circular-shaped microcavity (removing seven air holes) sustaining whispering-gallery mode (WGM) by shifting the 12 nearest air holes according to the concept of cavity-shaping in micro-disk and micro-gear lasers. The WGM modal characteristics are investigated by three-dimensional (3D) finite-difference time-domain (FDTD) simulations. From well-fabricated devices and simulated results, we obtain and identify WGM single-mode lasing with low threshold and high measured quality factor. By inserting additional waveguides, we also investigate its uniform coupling behaviors in different waveguide-cavity-waveguide geometries in both FDTD simulations and experiments.

© 2007 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.3945) Lasers and laser optics : Microcavities
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: May 31, 2007
Revised Manuscript: July 12, 2007
Manuscript Accepted: July 12, 2007
Published: July 16, 2007

Po-Tsung Lee, Tsan-Wen Lu, Chia-Min Yu, and Chung-Chuan Tseng, "Photonic crystal circular-shaped microcavity and its uniform cavity-waveguide coupling property due to presence of whispering gallery mode," Opt. Express 15, 9450-9457 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999). [CrossRef]
  2. S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, "Eight-channel microdisk CW laser arrays vertically coupled to common output bus waveguides," IEEE Photon. Technol. Lett. 16, 356-358 (2004). [CrossRef]
  3. S. Ishii, A. Nakagawa, and T. Baba, "Modal Characteristics and Bistability in Twin Microdisk Photonic Molecule Lasers," IEEE J. Sel. Top. Quantum Electron. 12, 71-77 (2006). [CrossRef]
  4. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  5. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003). [CrossRef]
  6. H. Y. Ryu, H. G. Park, and Y. H. Lee, "Two-dimensional Photonic Crystal Semiconductor Lasers: Computational Design, Fabrication, and Characterization," IEEE J. Sel. Top. Quantum Electron. 8, 891-908 (2002). [CrossRef]
  7. K. Nozaki and T. Baba, "Quasiperiodic photonic crystal microcavity lasers," Appl. Phys. Lett. 84, 4875-4877 (2004). [CrossRef]
  8. D. Chang, J. Scheuer, and A. Yariv, "Optimization of circular photonic crystal cavities: beyond coupled mode theory," Opt. Express 13, 9272-9279 (2005). [CrossRef] [PubMed]
  9. P. T. Lee, T. W. Lu, F. M. Tsai, T. C. Lu, and H. C. Kuo, "Whispering gallery mode of modified octagonal quasiperiodic photonic crystal single-defect microcavity and its side-mode reduction," Appl. Phys. Lett. 88, 201104 (2006). [CrossRef]
  10. P. T. Lee, T. W. Lu, F. M. Tsai, and T. C. Lu, "Investigation of whispering-gallery mode dependence on cavity geometry in quasiperiodic photonic crystal microcavity lasers," Appl. Phys. Lett. 89, 231111 (2006). [CrossRef]
  11. H. Y. Ryu, M. Notomi, G. H. Kim, and Y. H. Lee, "High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity," Opt. Express 12, 1708-1719 (2004). [CrossRef] [PubMed]
  12. M. Fujita and T. Baba, "Microgear laser," Appl. Phys. Lett. 80, 2051-2053 (2002). [CrossRef]
  13. K. P. Huy, A Morand, and P. Benech, "Modelization of the whispering gallery mode in microgear resonators using the Floquet-Bloch formalism," IEEE J. Quantum Electron. 41, 357-365 (2005). [CrossRef]
  14. K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, "Ultralow threshold and single-mode lasing in Microgear Lasers and its fusion with Quasi-Periodic Photonic Crystals," IEEE.J. Sel. Top. Quantum Electron. 9, 1355-1360 (2003). [CrossRef]
  15. M. K. Seo, K. Y. Jeong, J. K. Yang, Y. H. Lee, H. G. Park, and S. B. Kim, "Low threshold current single-cell hexapole mode photonic crystal laser," Appl. Phys. Lett. 90, 171122 (2007). [CrossRef]
  16. S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001). [CrossRef]
  17. K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003). [CrossRef]
  18. A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073102 (2007). [CrossRef]
  19. I. Park, H. S. Lee, H. J. Kim, K. M. Moon, S. G. Lee, B. H. O, S. G. Park, and E. H. Lee, "Photonic crystal power-splitter based on directional coupling," Opt. Express 12, 3599-3604 (2004). [CrossRef] [PubMed]
  20. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express,  12, 1551 (2004). [CrossRef] [PubMed]
  21. G. H. Kim, Y. H. Lee, A. Shinya, and M. Notomi, "Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide," Opt. Express 12, 6624 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited