OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 15 — Jul. 23, 2007
  • pp: 9510–9519

Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions

Z.Y. Yang and Y.F. Lu  »View Author Affiliations

Optics Express, Vol. 15, Issue 15, pp. 9510-9519 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (453 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Broadband nanowire-grid polarizers were designed and numerically simulated using the finite difference time domain (FDTD) method. Using a broadband stimulation source, optical properties of the polarizers were analyzed in the ultraviolet (UV)-visible-near infrared (NIR) regions. Specifically, the extinction ratios and optical transmittances of transverse magnetic (TM) and transverse electric (TE) modes were characterized for different metal materials and geometrical parameters including wire-grid periods, metal-wire fill ratios, and spacing between wire-grid layers. Based on the simulation results, an extra broadband polarizer with an average extinction ratio higher than 70 dB and transmission efficiency over 64% in the range of 0.3 to 5 µm was proposed.

© 2007 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(120.7000) Instrumentation, measurement, and metrology : Transmission
(230.5440) Optical devices : Polarization-selective devices
(260.5430) Physical optics : Polarization

ToC Category:
Optical Devices

Original Manuscript: June 18, 2007
Revised Manuscript: July 14, 2007
Manuscript Accepted: July 15, 2007
Published: July 17, 2007

Z. Y. Yang and Y. F. Lu, "Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions," Opt. Express 15, 9510-9519 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Levy, C. Tsai, M. Nezhad, W. Nakagawa, C. Chen, K. Tetz, L. Pang, and Y. Fainman, "Nanophotonics: materials and devices," Quantum Sensing and Nanophotonic Devices, Proc. SPIE 5359, 126 (2004).
  2. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. L. Brubaker, A. L. Lentine, R. L. Morrison, S. J. Hinterlong, M. J. Herron, S. L. Walker, and J. M. Sasian, "Experimental investigation of a free-space optical switching network by using symmetric self-electro-optic-effect devices,’’ Appl. Opt. 31, 5431 (1992), http://www.opticsinfobase.org/abstract.cfm?URI=ao-31-26-5431. [CrossRef]
  3. M. Ojima, A. Saito, T. Kaku, M. Ito, Y. Tsunoda, S. Takayama, and Y. Sugita, ‘‘Compact magneto-optical disk for coded data storage,’’ Appl. Opt. 25, 483 (1986), http://www.opticsinfobase.org/abstract.cfm?URI=ao-25-4-483. [CrossRef] [PubMed]
  4. P. Kunstmann and H.-J. Spitschan, "General complex amplitude addition in a polarization interferometer in the detection of pattern differences," Opt. Commun. 4, 166 (1971). [CrossRef]
  5. J. J. Wang, W. Zhang, X. Deng, J. Deng, F. Liu, P. Sciortino, and L. Chen, "High-performance nanowire-grid polarizers," Opt. Lett. 30, 195 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-2-195. [CrossRef] [PubMed]
  6. E. Hecht, Optics (4th Edition, Addison Wesley, 2002), pp. 333.
  7. Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked doublelayer subwavelength metal grating structure fabricated using nanoimprint lithography," Appl. Phys. Lett. 77, 927 (2000). [CrossRef]
  8. H. Tamada, T. Doumiki, T. Yamaguchi, and S. Matsumoto, "Al wire-grid polarizer using the spolarization resonance effect at the 0.8-μm-wavelength band," Opt. Lett. 22, 419 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-6-419. [CrossRef] [PubMed]
  9. D. Kim, "Polarization characteristics of a wire-grid polarizer in a rotating platform," Appl. Opt. 44, 1366 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ao-44-8-1366. [CrossRef] [PubMed]
  10. B. Schnabel, E-B. Kley, and F. Wyrowski, "Study on polarizing visible light by subwavelength-period metal stripe gratings," Opt. Eng. 38, 220 (1999). [CrossRef]
  11. L. Zhou and W. Liu, "Broadband polarizing beam splitter with an embedded metal-wire nanograting," Opt. Lett. 30, 1434 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-12-1434. [CrossRef] [PubMed]
  12. Y. Ekinci, H. H. Solak, C. David, and H. Sigg, "Bilayer Al wire-grids as broadband and high-performance polarizers," Opt. Express 14, 2323 (2006). [CrossRef] [PubMed]
  13. J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, "High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids," Appl. Phys. Lett. 90, 61104 (2007). [CrossRef]
  14. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices, " Appl. Opt. 37, 5271 (1998), http://www.opticsinfobase.org/abstract.cfm?URI=ao-37-22-5271. [CrossRef]
  15. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys.,  114, 185 (1994). [CrossRef]
  16. P. Harms, R. Mittra, and W. Ko, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," IEEE Trans. Antennas Propag. 42, 1317 (1994). [CrossRef]
  17. D. Palik, Handbook of Optical Constants of Solids, (Academic Press, 1985), pp. 275.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPG (2186 KB)     
» Media 2: MPG (1134 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited