OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 15 — Jul. 23, 2007
  • pp: 9575–9583

Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings

K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami  »View Author Affiliations

Optics Express, Vol. 15, Issue 15, pp. 9575-9583 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (354 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We examine the mechanism responsible for the optical activity of a two-dimensional array of gold nanostructures with no mirror symmetry on a dielectric substrate. Measurements with different incident angles, polarizations and sample orientations allow us to reveal that observed polarization effect is enhanced by surface plasmon resonance. By performing numerical simulation with rigorous diffraction theory we also show that the grating chirality can be described in terms of the non-coplanarity of the electric field vectors at the front (air-metal) and back (substrate-metal) sides of the grating layer.

© 2007 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: May 7, 2007
Revised Manuscript: June 7, 2007
Manuscript Accepted: July 9, 2007
Published: July 18, 2007

K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, "Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings," Opt. Express 15, 9575-9583 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Grating (Springer-Verlag, Berlin, 1988).
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  3. S. Linden, J. Kuhl, and H. Giessen, "Controlling the Interaction between Light and Gold Nanoparticles: Slelective Suppression of Excitation," Phys. Rev. Lett. 86, 4688-4691 (2001). [CrossRef] [PubMed]
  4. S. A. Maier, and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  5. J. Elliott, I. I. Smolyaninov, N. I. Zheludev, and A. V. Zayats, "Polarization control of optical transmission of a periodic array of elliptical nanohole in a metal film," Opt. Express 29, 1414-1416 (2004).
  6. C. Anceau, S. Brasselet, J. Zyss, and P. Gadenne, "Local second-harmonic generation enhancement on gold nanostructures probed by two-photon microscopy," Opt. Lett. 28, 713-715 (2003). [CrossRef] [PubMed]
  7. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical Manifestations of Planar Chirality," Phys. Rev. Lett. 90, 107404 (2003). [CrossRef] [PubMed]
  8. A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, and N. I. Zheludev, "Broken Time Reversal of Light Interaction with Planar Chiral Nanostructures," Phys. Rev. Lett. 91, 247404 (2003). [CrossRef] [PubMed]
  9. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, "Giant Optical Activity in Quasi-Two-Dimentional Planar Nanostructures," Phys. Rev. Lett. 95, 227401 (2005). [CrossRef] [PubMed]
  10. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheldev, "Giant Gyrotropy due to Electromagnetic-Field Coupling in a Bilayered Chiral Structure," Phys. Rev. Lett. 97, 117401 (2006). [CrossRef]
  11. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett. 90, 223113 (2007). [CrossRef]
  12. M. Decker, M. W. Klein, M. Wegener, and S. Linden, "Circular dichroism of planar chiral magnetic metamaterials," Opt. Lett. 32, 856-858 (2007). [CrossRef] [PubMed]
  13. In the inset of Fig. 1 of Ref. 8, images of the left- and right-twisted structures were exchanged by mistake.
  14. K. Sato, "Measurement of Magneto-Optical Kerr Effect Using Piezo-Birefringent Modulator," Jpn. J. Appl. Phys. 20, 2403-2409 (1981). [CrossRef]
  15. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004). [CrossRef] [PubMed]
  16. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B. 58, 6779-6782 (1998). [CrossRef]
  17. D. W. Lynch, and W. R. Hunter, "Gold(Au)" in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, New York, 1984).
  18. S. A. Darmanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study," Phys. Rev. B. 67, 035424 (2003). [CrossRef]
  19. W. L. Barns, T. W. Preist, S. C. Kiston, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B. 54, 6227-6244 (1996). [CrossRef]
  20. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (New York, Pergamon Press 1960).
  21. M. Born, Optik (Springer, Berlin, 1930).
  22. Y. Svirko, N. Zheludev, and M. Osipov, "Layered chiral metallic microstructures with inductive coupling," Appl. Phys. Lett. 78, 498-500 (2001). [CrossRef]
  23. B. Bai and L. Li, "Group-theoretic approach to enhancing the Fourier modal method for crossed gratings with C4 symmetry," J. Opt. A: Pure Appl. Opt. 7, 783-789 (2005). [CrossRef]
  24. R. C. Weast, M. J. Astle, and W.H. Beyer, CRC Handbook of Chemistry and Physics, 64 th ed. (CRC Press, Florida, 1984).
  25. A. V. Krasavin, A. S. Schwanecke, N. I. Zheludev, M. Reichelt, T. Stroucken, S. W. Koch, and E. M. Wright, "Polarization conversion and "focusing" of light propagating through a small chiral hole in a metallic screen," Appl. Phys. Lett. 86, 201105 (2005). [CrossRef]
  26. T. Ohno and S. Miyanishi, "Study of surface plasmon chirality induced by Archimedes’ spiral grooves," Opt. Express 14, 6285-6290 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited