OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 15 — Jul. 23, 2007
  • pp: 9817–9830

Are optical forces derived from a scalar potential?

Daniel Maystre and Patrick Vincent  »View Author Affiliations

Optics Express, Vol. 15, Issue 15, pp. 9817-9830 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (268 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The expression of optical forces provoked by an incident light illuminating particles can be deduced from the Lorentz law. It is shown that these forces derive from a scalar potential in the 2D problem and s-polarization, with light propagating in the cross-section plane of the particles, a fact which shows that the separation between gradient and scattering forces could be questioned. This property does not extend to the p-polarization and 3D problem. In the general case, it is shown that one of the components of the optical force is intimately linked with the reactive energy inside the particle. A possible application is given.

© 2007 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(140.7010) Lasers and laser optics : Laser trapping
(260.2110) Physical optics : Electromagnetic optics
(290.5850) Scattering : Scattering, particles

ToC Category:
Physical Optics

Original Manuscript: December 19, 2006
Revised Manuscript: February 22, 2007
Manuscript Accepted: April 2, 2007
Published: July 20, 2007

Virtual Issues
Vol. 2, Iss. 8 Virtual Journal for Biomedical Optics

Daniel Maystre and Patrick Vincent, "Are optical forces derived from a scalar potential?," Opt. Express 15, 9817-9830 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin,"Acceleration and Trapping of Particles by Radiation Pressure," Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  2. A. Ashkin,"Optical trapping and manipulation of neutral particles using lasers,"Proc. Natl. Acad. Sci. USA 94, 4853-4860 (1997). [CrossRef] [PubMed]
  3. M. Burns, J-M. Fournier and J. Golovshenko,"Optical Binding,"Phys. Rev. Lett. 63, 1233-1236 (1989). [CrossRef] [PubMed]
  4. M. Burns, J-M. Fournier and J. Golovshenko, "Lateral binding effect, due to particle's optical interaction,"Science 289, 749-754 (1990). [CrossRef]
  5. J-M. Fournier, G. Boer, G. Delacrétaz, P. Jacquot, J. Rohner and R. Salathé,"Building Optical Matter with Binding and Trapping Forces," Proc. SPIE 5514, 309-317 (2004). [CrossRef]
  6. W. Singer, M. Frick, S. Bernet and M. Ritsch-Marte,"Self-organized array of regularly spaced microbeads in a fiber-optical trap," J. Opt. Soc. Am. B 20, 1568-1574 (2003). [CrossRef]
  7. S. Tatarkova, A. Carruthers and K. Dholakia,"One-Dimensional Optically Bound Arrays of Microscopic Particles," Phys. Rev. Lett. 89, 283901 (2002). [CrossRef]
  8. N. Metzger, K. Dholakia and E. Wright,"Observation of Bistability and Hysteresis in Optical Binding of Two Dielectric Spheres," Phys. Rev. Lett. 96, 068102 (2006). [CrossRef] [PubMed]
  9. C. Mellor, C. Bain Chem., "Array Formation in Evanescent Waves," Phys. Chem. 7, 329-332 (2006). [CrossRef]
  10. N. Metzger, E. Wright, W. Sibbett and K. Dholakia," Visualization of optical binding of microparticles using a femtosecond fiber optical trap," Opt. Express 14, 3677-3687 (2006). [CrossRef] [PubMed]
  11. P. Chaumet and M. Nieto-Vesperinas,"Time averaged total force on a dipolar sphere in an electromagnetic field," Opt. Lett. 25, 1065-1067 (2000). [CrossRef]
  12. T. Grzegorczyk, B. Kemp, and J. Kong, "Trapping and binding of an arbitrary number of cylindrical particles in an in-plane electromagnetic field," J. Opt. Soc. Am. A 23, 2324-2330 (2006). [CrossRef]
  13. T. Grzegorczyk, B. Kemp, and J. Kong, "Stable optical trapping based on optical binding forces, "Phys. Rev. Lett. 96, 113903 (2006). [CrossRef] [PubMed]
  14. M. Povinelli, S. Johnson, M. Lonèar, M. Ibanescu, E. Smythe, F. Capasso and J. Joannopoulos,"High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery- mode resonators,"Opt. Express 13, 8286-8295 (2005). [CrossRef] [PubMed]
  15. D. McGloin, A. Carruthers, K. Dholakia and E. Wright,"Optically bound microscopic particles in one. dimension," Phys. Rev. E 69,021403 (2004). [CrossRef]
  16. A. Rohrbach and E. Stelzer, "Trapping forces and potentials of dielectric spheres in the presence of spherical aberrations,"J. Opt. Soc. Am. A 18, 839-853 (2001). [CrossRef]
  17. E. Lidorikis, Q. Li and C. Soukoulis, "Optical Bistability in Colloidal Crystals," Phys. Rev. E 55, 3613-3618 (1997). [CrossRef]
  18. M. Antonoyiannakis and J. Pendry, "Electromagnetic forces in photonic crystals, "Phys. Rev. B 60, 2363-2374 (1999). [CrossRef]
  19. J. Ng, Chan, C. Sheng and Z. Lin, "Strong optical force induced by morphology-dependent resonances," Opt. Lett. 30, 1956-1958 (2005). [CrossRef] [PubMed]
  20. D. Maystre and P. Vincent, "Making photonic crystals using trapping and binding optical forces on particles," J. Opt. A: Pure Appl. Opt. 8, 1059-1066 (2006). [CrossRef]
  21. D. Maystre and P. Vincent, "Phenomenological study of binding in optically trapped photonic crystals," submitted to the J. Opt. Soc. Am. A.
  22. T. M. Grzegorczyk and Jin Au Kong, "Analytical expression of the force due to multiple TM plane wave incidences on an infinite lossless dielectric circular cylinder of arbitrary size," to be published in the J. Opt. Soc. Am. B.
  23. M. Mansuripur, "Radiation pressure and the linear momentum of the electromagnetic field," Opt. Express 12, 5375-5401 (2004). [CrossRef] [PubMed]
  24. A. R. Zakharian, M. Mansuripur, and J. V. Moloney, "Radiation pressure and the distribution of electromagnetic force in a dielectric media," Opt. Express 13, 2321-2336 (2005). [CrossRef] [PubMed]
  25. B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, "Ab initio study of the radiation pressure on dielectric and magnetic media," Opt. Express 13, 9280-9291 (2005). [CrossRef] [PubMed]
  26. B. A. Kemp, T. M. Grzegorczyk, and J. A. Kong, "Optical momentum transfer to absorbing Mie particles," Phys. Rev. Lett. 97, 133902 (2006). [CrossRef] [PubMed]
  27. L. Novotny and B. Hecht, "Principles of Nano-Optics," (Cambridge University Press, Cambridge) (2006).
  28. JacksonJ  D Classical Electrodynamics, 2nd edition (New-York-Wiley) (1975).
  29. J.A. Kong, Maxwell Equations (EMW Publishing: Cambridge, MA) (2002).
  30. J. Van Bladel Electromagnetic Fields (Mc Graw-Hill: New York) (1964).
  31. Ch. Imbert, "Calculation and Experimental Proof of the Transverse Shift Induced by Total Internal Reflection of a Circularly Polarized Light Beam," Phys. Rev. D 5, 787 - 796 (1972). [CrossRef]
  32. B.T. Draine, "The discrete-dipole approximation and its application to interstellar graphite grains,"Astrophys. J. 333, 848-872 (1988). [CrossRef]
  33. D. Maystre, "Getting effective permittivity and permeability equal to −1 in 1D dielectric photonic crystals," J. Mod. Opt. 53, 1901-1917 (2006). [CrossRef]
  34. J. P. Gordon, "Radiation Forces and Momenta in Dielectric Media," Phys. Rev. A 8,14-21 (1973). [CrossRef]
  35. Y. N. Obukhov and F. W. Hehl, "Electromagnetic energy-momentum and forces in matter," Phys. Lett. A 311, 277-284 (2003). [CrossRef]
  36. R.  Loudon, "Theory of the radiation pressure on dielectric surfaces," J. Mod. Opt.  49, 812-836 (2002). [CrossRef]
  37. R.  Loudon, S. M.  Barnett and C.  Baxter, "Radiation pressure and momentum transfer in dielectrics: the photon drag effect," Phys. Rev. A  71, 063802 (2005). [CrossRef]
  38. C. Raabe and D. G. Welsch, "Casimir force acting on magnetodielectric bodies embedded in media," Phys. Rev. A 71, 013814 (2005). [CrossRef]
  39. L. P. Pitaevskii, "Why and when the Minkowski’s stress tensor can be used in the problem of Casimir force acting on bodies embedded in media," Cond-mat, 0505754 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig.1 Fig.2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited