OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 15 — Jul. 23, 2007
  • pp: 9877–9882

Arrays of microlenses with variable focal lengths fabricated by restructuring polymer surfaces with an ink-jet device

Ramon Pericet-Camara, Andreas Best, Sebastian K. Nett, Jochen S. Gutmann, and Elmar Bonaccurso  »View Author Affiliations


Optics Express, Vol. 15, Issue 15, pp. 9877-9882 (2007)
http://dx.doi.org/10.1364/OE.15.009877


View Full Text Article

Enhanced HTML    Acrobat PDF (747 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report of a method for fabricating two-dimensional, regular arrays of polymer microlenses with focal lengths variable between 0.2 and 4.5 mm. We first make concave microlenses by ink-jetting solvent on a polymer substrate with a commercial drop-on-demand device. Solvent evaporation restructures the surface by a series of combined effects, which are discussed. In the second step we obtain convex elastomeric microlenses by casting the template made in the first step. We demonstrate the good optical quality of the microlenses by characterising their surfaces with atomic force microscopy and white light interferometry, and by directly measuring their focal lengths with ad-hoc confocal laser scanning microscopy.

© 2007 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.0230) Optical devices : Optical devices
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: April 30, 2007
Revised Manuscript: May 29, 2007
Manuscript Accepted: June 15, 2007
Published: July 20, 2007

Citation
Ramon Pericet-Camara, Andreas Best, Sebastian K. Nett, Jochen S. Gutmann, and Elmar Bonaccurso, "Arrays of microlenses with variable focal lengths fabricated by restructuring polymer surfaces with an ink-jet device," Opt. Express 15, 9877-9882 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9877


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. F. Land, "Microlens arrays in the animal kingdom," Pure Appl. Opt. 6, 599 (1997). [CrossRef]
  2. K. Iga, Y. Kokubun, and M. Oikawa, Fundamentals of Microoptics: Distributed-Index, Microlens, and Stacked Planar Optics (Tokyo, 1984).
  3. H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo, and H. Thienpont, "Comparing glass and plastic refractive microlenses fabricated with different technologies," J. Opt. A 8, S407 (2006). [CrossRef]
  4. H. Yabu and M. Shimomura, "Simple fabrication of micro lens arrays," Langmuir 21, 1709 (2005). [CrossRef] [PubMed]
  5. C. Y. Chang, S. Y. Yang, L. S. Huang, and T. M. Jeng, "A novel method for rapid fabrication of microlens arrays using micro-transfer molding with soft mold," J. Micromech. Microeng. 16, 999 (2006). [CrossRef]
  6. C. Y. Chang, S. Y. Yang, L. S. Huang, and K. H. Hsieh, "Fabrication of polymer microlens arrays using capillary forming with a soft mold of micro-holes array and UV-curable polymer," Opt. Express 14, 6253 (2006). [CrossRef] [PubMed]
  7. M. H. Wu, C. Park, and G. M. Whitesides, "Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography," Langmuir 18, 9312 (2002). [CrossRef]
  8. B. Messerschmidt, T. Possner, and R. Goering, "Colorless Gradient-Index Cylindrical Lenses with High Numerical Apertures Produced by Silver-Ion Exchange," Appl. Opt. 34, 7825 (1995). [CrossRef] [PubMed]
  9. P. Ruther, B. Gerlach, J. Gottert, M. Ilie, J. Mohr, A. Muller, and C. Ossmann, "Fabrication and characterization of microlenses realized by a modified LIGA process," Pure Appl. Opt. 6, 643 (1997). [CrossRef]
  10. H. J. Nam, D. Y. Jung, G. R. Yi, and H. Choi, "Close-packed hemispherical microlens array from two-dimensional ordered polymeric microspheres," Langmuir 22, 7358 (2006). [CrossRef] [PubMed]
  11. D. J. Kang, J. P. Jeong, and B. S. Bae, "Direct photofabrication of focal-length-controlled microlens array using photoinduced migration mechanisms of photosensitive sol-gel hybrid materials," Opt. Express 14, 8347 (2006). [CrossRef] [PubMed]
  12. B.-J. de Gans, P. C. Duineveld, and U. S. Schubert, "Inkjet printing of polymers: State of the art and future developments," Adv. Mater. 16, 203 (2004). [CrossRef]
  13. B. P. Keyworth, D. J. Corazza, J. N. McMullin, and L. Mabbott, "Single-step fabrication of refractive microlens arrays," Appl. Opt. 36, 2198 (1997). [CrossRef] [PubMed]
  14. R. Danzebrink, and M. A. Aegerter, "Deposition of micropatterned coating using an ink-jet technique," Thin Solid Films 351, 115 (1999). [CrossRef]
  15. S. Yang, T. N. Krupenkin, P. Mach, and E. A. Chandross, "Tunable and latchable liquid microlens with photopolymerizable components," Adv. Mater. 15, 940 (2003). [CrossRef]
  16. T. Krupenkin, S. Yang, and P. Mach, "Tunable liquid microlens," Applied Physics Letters 82, 316 (2003). [CrossRef]
  17. T. Kawase, H. Sirringhaus, R. H. Friend, and T. Shimoda, "Inkjet printed via-hole interconnections and resistors for all-polymer transistor circuits," Adv. Mater. 13, 1601 (2001). [CrossRef]
  18. B. J. de Gans, S. Hoeppener, and U. S. Schubert, "Polymer-relief microstructures by inkjet etching," Adv. Mater. 18, 910 (2006). [CrossRef]
  19. E. Bonaccurso, H. J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, "Fabrication of microvessels and microlenses from polymers by solvent droplets," Appl. Phys. Lett. 86, 124101 (2005). [CrossRef]
  20. C. Stupperich-Sequeira, K. Graf, and W. Wiechert, "Modelling and simulation of micro-well formation," Math. Comput. Model. Dyn. Syst. 12, 263 (2006). [CrossRef]
  21. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, "Capillary flow as the cause of ring stains from dried liquid drops," Nature 389, 827 (1997). [CrossRef]
  22. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, "Contact line deposits in an evaporating drop," Phys. Rev. E 62, 756 (2000). [CrossRef]
  23. S. Karabasheva, S. Baluschev, and K. Graf, "Microstructures on soluble polymer surfaces via drop deposition of solvent mixtures," Appl. Phys. Lett. 89, 031110 (2006). [CrossRef]
  24. E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, "Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays," Appl. Phys. Lett. 84, 2754 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig.1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited