OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 16 — Aug. 6, 2007
  • pp: 10052–10060

Room temperature lasing of InAs/GaAs quantum dots in the whispering gallery modes of a silica microsphere

Sébastien Steiner, Jean Hare, Valérie Lefèvre-Seguin, and Jean-Michel Gérard  »View Author Affiliations

Optics Express, Vol. 15, Issue 16, pp. 10052-10060 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (166 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have achieved low threshold lasing of self-assembled InAs/GaAs quantum dots coupled to the evanescent wave of the high-Q whispering gallery modes of a silica microsphere. In spite of high temperature and Q-spoiling of whispering gallery modes due to diffusion and refraction on the high index semiconductor sample, room temperature lasing is obtained with less than 100 quantum dots. This result highlights the feasibility and interest of combining self-assembled quantum dots and microspheres in view of cavity-quantum electrodynamics experiments.

© 2007 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3410) Lasers and laser optics : Laser resonators
(140.5960) Lasers and laser optics : Semiconductor lasers
(160.6030) Materials : Silica
(270.5580) Quantum optics : Quantum electrodynamics

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 9, 2007
Revised Manuscript: April 30, 2007
Manuscript Accepted: April 30, 2007
Published: July 26, 2007

Sébastien Steiner, Jean Hare, Valérie Lefèvre-Seguin, and Jean-Michel Gérard, "Room temperature lasing of InAs/GaAs quantum dots in the whispering gallery modes of a silica microsphere," Opt. Express 15, 10052-10060 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. R. J. Warburton, C. S. Dürr, K. Karrai, J. P. Kotthaus, G. Medeiros-Ribeiro, and P. M. Petroff, "Charged excitons in self-assembled semiconductor quantum dots," Phys. Rev. Lett. 79, 5282-5285 (1997). [CrossRef]
  2. J.-Y. Marzin, J.-M. Gérard, A. Izraël, D. Barrier, and G. Bastard, "Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs," Phys. Rev. Lett. 73, 716 (1994). [CrossRef] [PubMed]
  3. M. Bayer and A. Forchel, "Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots," Phys. Rev. B 65, R041308 (2002). [CrossRef]
  4. C. Kammerer, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, F. Klopf, J. P. Reithmaier, A. Forchel, and J.-M. Gérard, "Line narrowing in single semiconductor quantum dots: Toward the control of environment effects," Phys. Rev. B 66, R041306 (2002). [CrossRef]
  5. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, "Ultralong dephasing time in InGaAs quantum dots," Phys. Rev. Lett. 87, 157401 (2001). [CrossRef] [PubMed]
  6. S. Haroche, "Cavity quantum electrodynamics," in "Fundamental Systems in Quantum Optics," J. Dalibard, J. Raimond, and J. Zinn-Justin, eds. (North Holland, 1992), Les Houches Summer School, Session LIII.
  7. J.-M. Gérard, Solid-State Cavity-Quantum Electrodynamics with Self-Assembled Quantum Dots (Springer, Berlin / Heidelberg, 2003), vol. 90 of Topics in Applied Physics, pp. 269 - 314.
  8. J.-M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998). [CrossRef]
  9. E. Moreau, I. Robert, J.-M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, "Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities," Appl. Phys. Lett. 79, 2865 (2001). [CrossRef]
  10. C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a singlephoton device," Nature 419, 594 (2002). [CrossRef] [PubMed]
  11. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005). [CrossRef] [PubMed]
  12. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197 (2004).
  13. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004). [CrossRef] [PubMed]
  14. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J.-M. Gérard, and J. Bloch, "Exciton photon strongcoupling regime for a single quantum dot embedded in a microcavity," Phys. Rev. Lett. 95, 067401 (2005). [CrossRef] [PubMed]
  15. K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, "Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots," Appl. Phys. Lett. 86, 151106 (2005). [CrossRef]
  16. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005). [CrossRef]
  17. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, "Quality-factor and non-linear properties of optical whispering-gallery modes," Phys. Lett. A 137, 393-397 (1989). [CrossRef]
  18. L. Collot, V. Lefèvre-Seguin, M. Brune, J. M. Raimond, and S. Haroche, "Very high-Q whispering-gallery mode resonances observed on fused silica microspheres," Europhys. Lett. 23, 327 (1993). [CrossRef]
  19. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925 (2003). [CrossRef] [PubMed]
  20. V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Very low threshold whispering-gallery mode microsphere laser," Phys. Rev. A 54, R1777 (1996). [CrossRef] [PubMed]
  21. W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lefèvre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, "Very low threshold lasing in Er3+ doped ZBLAN microsphere," Electron. Lett. 35, 1745-1746 (1999). [CrossRef]
  22. F. Lissillour, P. Feron, N. Dubreuil, P. Dupriez, M. Poulain, and G. M. Stephan, "Erbium-doped microspherical lasers at 1.56 μm," Electr. Lett. 36, 1382-1384 (2000). [CrossRef]
  23. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, "Fiber-coupled microsphere laser," Opt. Lett. 25, 1430 (2000). [CrossRef]
  24. L. Yang, D. K. Armani, and K. J. Vahala, "Fiber-coupled erbium microlasers on a chip," Appl. Phys. Lett. 83, 825-827 (2003). [CrossRef]
  25. X. Fan, S. Lacey, and H. Wang, "Microcavities combining a semiconductor with a fused-silica microsphere," Opt. Lett. 24, 771 (1999). [CrossRef]
  26. X. Fan, P. Palinginis, S. Lacey, H. Wang, and M. C. Lonergan, "Coupling semiconductor nanocrystals to a fusedsilica microsphere: A quantum-dot microcavity with extremely high q factors," Opt Lett. 25, 1600 (2000). [CrossRef]
  27. S. Gotzinger, L. D. Menezes, A. Mazzei, S. Kuhn, V. Sandoghdar, and O. Benson, "Controlled photon transfer between two individual nanoemitters via shared high-Q modes of a microsphere resonator," Nano Lett. 6, 1151-1154 (2006). [CrossRef] [PubMed]
  28. N. L. Thomas, U. Woggon, O. Schops, M. V. Artemyev, M. Kazes, and U. Banin, "Cavity QED with semiconductor nanocrystals," Nano Lett. 6, 557-561 (2006). [CrossRef] [PubMed]
  29. I. Protsenko, P. Domokos, V. Lefèvre-Seguin, J. Hare, J.-M. Raimond, and L. Davidovich, "Quantum theory of a thresholdless laser," Phys. Rev. A 59, 1667-1682 (1999). [CrossRef]
  30. M. Pelton and Y. Yamamoto, "Ultralow threshold laser using a single quantum dot and a microsphere cavity," Phys. Rev. A 59, 2418-2421 (1999). [CrossRef]
  31. V. Lefèvre-Seguin, J. C. Knight, V. Sandoghdar, D. Weiss, J. Hare, J.-M. Raimond, and S. Haroche, Very High-Q Whispering-Gallery Modes in Silica Microspheres for Cavity-QED Experiments (World Scientific, 1996), chap. 3, no. 3 in Advanced Series in Applied Physics.
  32. J. C. Knight, N. Dubreuil, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Mapping whispering-gallery modes in microspheres using a near-field probe," Opt. Lett. 20, 1515 (1995). [CrossRef] [PubMed]
  33. P. Borri, W. Langbein, J. Moîrk, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, "Dephasing in InAs/GaAs quantum dots," Phys. Rev. B 60, 7784 (1999). [CrossRef]
  34. F.-M. Treussart, "Etude expérimentale de l’effet Laser dans des microsphères de silice dop ees avec des ions néodyme," Ph.D. thesis, Université Paris VI (1997).
  35. S. Steiner, "Microsphères de silice et Boîtes quantiques InAs/GaAs: réalisation d’un microlaser faible seuil," Ph.D. thesis, Université Paris VI (2003).
  36. N. Dubreuil, J. C. Knight, D. K. Leventhal, V. Sandoghdar, J. Hare, and V. Lefèvre, "Eroded monomode optical fiber for excitation in fused-silica microspheres," Opt. Lett. 20, 813 (1995). [CrossRef] [PubMed]
  37. F. Treussart, V. S. Ilchenko, J-F. Roch, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium," Eur. Phys. J. D 1, 235-238 (1998).
  38. Even at 778 nm the large imaginary part of ND. 3.67+i 0.29 gives r..0.78+i 0.54, leading to the same conclusion.
  39. The small increase of the coupling efficiency on each side of the central drop indicates the crossing of critical coupling for prim-sphere interaction, initially over-coupled.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited