OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 16 — Aug. 6, 2007
  • pp: 10061–10074

A new robust regime for a dispersion-managed multichannel 2R regenerator

Taras I. Lakoba and Michael Vasilyev  »View Author Affiliations


Optics Express, Vol. 15, Issue 16, pp. 10061-10074 (2007)
http://dx.doi.org/10.1364/OE.15.010061


View Full Text Article

Enhanced HTML    Acrobat PDF (205 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the performance of a multichannel version [M. Vasilyev and T.I. Lakoba, Opt. Lett. 30, 1458 (2005)] of the all-optical Mamyshev regenerator in a practically important situation where one of its key components - a periodic-group-delay device - has a realistic amplitude characteristic of a bandpass filter. We show that in this case, the regenerator can no longer operate in the regime reported in our original paper. Instead, we have found a new regime in which the regenerator’s performance is robust not only to such filtering, but also to considerable variations of regenerator parameters. In this regime, the average dispersion of the regenerator must be (relatively) large and anomalous, in constrast to what was considered in all earlier studies of such (single-channel) regenerators based on spectral broadening followed by off-center filtering. In addition, hardware implementation of a regenerator in the new regime is somewhat simpler than that in the original regime.

© 2007 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4510) Fiber optics and optical communications : Optical communications
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(230.1150) Optical devices : All-optical devices
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 12, 2007
Revised Manuscript: July 12, 2007
Manuscript Accepted: July 18, 2007
Published: July 26, 2007

Citation
Taras I. Lakoba and Michael Vasilyev, "A new robust regime for a dispersion-managed multichannel 2R regenerator," Opt. Express 15, 10061-10074 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-16-10061


Sort:  Year  |  Journal  |  Reset  

References

  1. P. V. Mamyshev, "All-optical regeneration based on self-phase modulation effect," in Proceedings of the 24th European Conference on Optical Communications (ECOC, Madrid, Spain, 1998), Vol. 1, pp. 475-476.
  2. Y. Su, G. Raybon, R.-J. Essiambre, and T.-H. Her, "All-optical 2R regeneration of 40-Gb/s signal impaired by intrachannel four-wave mixing," IEEE Photon. Technol. Lett. 15, 350-352 (2003). [CrossRef]
  3. T.-H. Her, G. Raybon, and C. Headley, "Optimization of pulse regeneration at 40 Gb/s based on spectral filtering of self-phase modulation in fiber," IEEE Photon. Technol. Lett. 16, 200-202 (2004). [CrossRef]
  4. M. Matsumoto, "Performance analysis and comparison of optical 3R regenerators utilizing self-phase modulation in fibers," J. Lightwave Technol. 22, 1472-1482 (2004). [CrossRef]
  5. M. Vasilyev and T. I. Lakoba, "All-optical multichannel 2R regeneration in a fiber-based device," Opt. Lett. 30, 1458-1460 (2005). [CrossRef] [PubMed]
  6. M. Eiselt, "Does spectrally periodic dispersion compensation reduce non-linear effects?" in Proceedings of the 25th European Conference on Optical Communications (ECOC, Nice, France, 1999), Vol. 1, pp. 144-145.
  7. G. Bellotti and S. Bigo, "Cross-phase modulation suppressor for multispan dispersion-managed WDM transmission," IEEE Photon. Technol. Lett. 12, 726-728 (2000). [CrossRef]
  8. X. Wei, X. Liu, C. Xie, and L. F. Mollenauer, "Reduction of collision-induced timing jitter in dense wavelengthdivision multiplexing by the use of periodic-group-delay dispersion compensators," Opt. Lett. 28, 983-985 (2003). [CrossRef] [PubMed]
  9. L. F. Mollenauer, A. Grant, X. Liu, X. Wei, C. Xie, and I. Kang, "Experimental test of dense wavelength-division multiplexing using novel, periofic-group-delay-complemented dispersion compensation and dispersion-managed solitons," Opt. Lett. 28, 2043-2045 (2003). [CrossRef] [PubMed]
  10. T. Ohara, H. Takara, A. Hirano, K. Mori, and S. Kawanishi, "40-Gb/s × 4-channel all-optical multichannel limiter utilizing spectrally filtered optical solitons," IEEE Photon. Technol. Lett. 15, 763-765 (2003). [CrossRef]
  11. D. Yang, C. Lin, W. Chen, and G. Barbarossa, "Fiber Dispersion and Dispersion Slope Compensation in a 40-Channel 10-Gb/s 3200-km Transmission Experiment Using Cascaded Single-Cavity GiresTournois Etalons," IEEE Photon. Technol. Lett. 16, 299-301 (2004). [CrossRef]
  12. W. Zhu, G. Barbarossa, D. Yang, and C. Lin, "Simulation and Design for a Tunable Dispersion Compensator Package," IEEE Trans. Compon. Packag. Technol. 27, 513-522 (2004). [CrossRef]
  13. R. L. Lachance, S. Lelievre, and Y. Painchaud, "50 and 100 GHz multi-channel tunable chromatic dispersion slope compensator," in Optical Fiber Communications Conference, 2003 OSA Technical Digest Series (Optical Society of America, 2003), Vol. 1, pp. 164-165.
  14. L. M. Lunardi, D. J. Moss, S. Chandrasekhar, L. L. Buhl, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, "Tunable Dispersion Compensation at 40 Gb/s using a multicavity etalon all-pass filter, with NRZ, RZ and CSRZ Modulation," J. Lightwave Technol. 20, 2136-2144 (2002). [CrossRef]
  15. D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, "Tunable Dispersion and Dispersion Slope Compensators for 10 Gb/s Using All-Pass Multicavity Etalons," IEEE Photon. Technol. Lett. 15, 730-732 (2003). [CrossRef]
  16. T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, and J.-C. Simon, "Noise reduction in 2R-regeneration technique utilizing self-phase modulation and filtering," Opt. Express 14, 1737-1747 (2006). [CrossRef] [PubMed]
  17. A. Bertson, N.J. Doran, W. Forrysiak, and J.H.B. Nijhof, "Power dependence of dispersion-managed solitons for anomalous, zero, and normal path-average dispersion," Opt. Lett. 23, 900-902 (1998). [CrossRef]
  18. M. Vasilyev and T. I. Lakoba, "Fiber-Based All-Optical 2R Regeneration of Multiple WDM Channels," in Optical Fiber Communication Conference, 2005 OSA Technical Digest on CD-ROM (Optical Society of America, 2005), paper OME62.
  19. In this work, unlike in our earlier paper [5], we do not consider the 40 Gb/s case. For general scaling rules of regenerator parameters with the bit rate, we refer the reader to [5], where we also analyze the impact of higher spectral efficiency (at 40 Gb/s) on the regenerator performance. The focus of the present work is on studying the regenerator’s performance for the parameters of a specific commercial PGDD available in the lab of the second author (M.V.) and designed for 10-Gb/s applications. At the moment, we do not have the information necessary to model a 40-Gb/s-compatible PGDD, without which information we could not proceed with a similar study of a multichannel regenerator at 40 Gb/s.
  20. L. A. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, "Design scaling rules for 2R-optical self-phase modulation-based regenerators," Opt. Express 15, 5100-5113 (2007). [CrossRef] [PubMed]
  21. D. F. Grosz, A. Agarwal, S. Banerjee, D. N. Maywar, and A. P. Küng, "All-Raman ultralong-haul single-wideband DWDM transmission systems with OADM capability," J. Lightwave Technol. 22, 423-432 (2004). [CrossRef]
  22. L. F. Mollenauer, S. G. Evangelides, and J. P. Gordon, "Wavelength division multiplexing with solitons in ultralongdistance transmission using lumped amplifiers," J. Lightwave Technol. 9, 362-367 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited