OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 16 — Aug. 6, 2007
  • pp: 10163–10174

Offset-apertured near-field scanning optical microscope probes

M. C. Quong and A. Y. Elezzabi  »View Author Affiliations

Optics Express, Vol. 15, Issue 16, pp. 10163-10174 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (548 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Near-field scanning optical microscope (NSOM) probe designs consisting of a subwavelength aperture offset of either a metallic or metal-coated dielectric cantilevered tip are investigated using finite-difference time-domain calculations. The offset aperture and metal-coated dielectric tip couple surface plasmons that illuminate the tip apex, which results in a single-lobed probing optical spot having a full-width half maximum (FWHM) similar to the apex diameter. Since the surface plasmons converge at the apex, an offset-apertured probe promises significantly higher throughput light intensities than an apertured NSOM having a comparable spot FWHM.

© 2007 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(180.5810) Microscopy : Scanning microscopy
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:

Original Manuscript: April 18, 2007
Revised Manuscript: July 3, 2007
Manuscript Accepted: July 6, 2007
Published: July 27, 2007

Virtual Issues
Vol. 2, Iss. 9 Virtual Journal for Biomedical Optics

M. C. Quong and A. Y. Elezzabi, "Offset-apertured near-field scanning optical microscope probes," Opt. Express 15, 10163-10174 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. E. H. Synge, "A suggested method for extending microscopic resolution into the ultra-microscopic region," Philosophy Magazine 6, 356-362 (1928).
  2. D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/20," Appl. Phys. Lett. 44, 651-653 (1984). [CrossRef]
  3. A. Lewis, M. Isaacson, A. Harotunian, and A. Muray, "Development of a 500-Å Spatial-Resolution Light-Microscope : I. Light is Efficiently Transmitted Through l/16 Diameter Apertures," Ultramicroscopy 13, 227 (1984). [CrossRef]
  4. H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944). [CrossRef]
  5. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnology 13, 429-432 (2002). [CrossRef]
  6. A. Dechant, S. K. Dew, S. E. Irvine, and A. Y. Elezzabi, "High-transmission solid-immersion apertured optical probes for near-field scanning optical microscopy," Appl. Phys. Lett. 86, 013102 (2005). [CrossRef]
  7. A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, and H. Fuchs, "Enhanced Light Confinement in a Near-Field Optical Probe with a Triangular Aperture," Phys. Rev. Lett. 89, 210801 (2002). [CrossRef] [PubMed]
  8. J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648-650 (2004). [CrossRef]
  9. E. X. Jin and X. Xu, "Enhanced optical near field from a bowtie aperture," Appl. Phys. Lett. 88, 153110 (2006). [CrossRef]
  10. F. Zenhausern, M. P. O'Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994). [CrossRef]
  11. J. M. Gerton, L. A. Wade, G. A. Lessard, Z. Ma, and S. R. Quake, "Tip-Enhanced Fluorescence Microscopy at 10 Nanometer Resolution," Phys. Rev. Lett. 93, 180801 (2004). [CrossRef] [PubMed]
  12. L. Gomez, R. Bachelot, A. Bouhelier, G. P. Wiederrecht, S. Chang, S. K. Gray, F. Hua, S. Jeon, J. A. Rogers, M. E. Castro, S. Blaize, I. Stefanon, G. Lerondel, and P. Royer, "Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches," J. Opt. Soc. Am. B 23, 823-833 (2006). [CrossRef]
  13. U. C. Fischer and M. Zapletal, "The concept of a coaxial tip as a probe for scanning near-field optical microscopy and steps towards a realization," Ultramicroscopy 42, 393-398 (1992). [CrossRef]
  14. T. Leinhos, O. Rudow, M. Stopka, A. Vollkopf, and E. Oesterschulze, "Coaxial probes for scanning near-field microscopy," J. Microsc. 194, 349-352 (1999). [CrossRef]
  15. H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, "Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe," Appl. Phys. Lett. 81, 5030-5032 (2002). [CrossRef]
  16. H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, "High-Resolution Imaging of Single Fluorescent Molecules with the Optical Near-Field of a Metal Tip," Phys. Rev. Lett. 93, 200801 (2004). [CrossRef] [PubMed]
  17. T. H. Taminau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "λ/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence," Nano Lett. 7, 28-33 (2007). [CrossRef]
  18. K. Tanaka, M. Tanaka, and T. Sugiyama, "Creation of strongly localized and strongly enhanced optical near-field on metallic probe-tip with surface plasmon polaritons," Opt. Express 14, 832-846 (2006). [CrossRef] [PubMed]
  19. H. G. Frey, C. Bolwien, A. Brandenburg, R. Ros, and D. Anselmetti, "Optimized apertureless optical near-field probes with 15 nm optical resolution," Nanotechnology 17, 3105-3110 (2006). [CrossRef]
  20. Y. Mitsuoka, T. Niwa, S. Ichihara, K. Kato, H. Muramatsu, K. Nakajima, M. Shikida, and K. Sato, "Microfabricated silicon dioxide cantilever with subwavelength aperture," J. Microsc. 202, 12-15 (2001). [CrossRef] [PubMed]
  21. G. Schürmann, W. Noell, U. Staufer, N. F. de Rooij, R. Eckert, J. M. Freyland, and H. Heinzelmann, "Fabrication and characterization of a silicon cantilever probe with an integrated quartz-glass (fused-silica) tip for scanning near-field optical microscopy," Appl. Opt. 40, 5040-5045 (2001). [CrossRef]
  22. L. Aeschimann, Apertureless Scanning Near-Field Optical Microscope Probe for Transmission Mode Operation (University of Neuchâtel, Switzerland, 2004).
  23. M. Y. Jung, S. S. Choi, and I. W. Lyo, "Micromachined Si3N4-Tip on Cantilever for Parallel SFM and NSOM Applications," Microelectronic Engineering 46, 427-430 (1999). [CrossRef]
  24. P. N. Minh, T. Ono, and M. Esashi, "High throughput aperture near-field scanning optical microscopy," Rev. Sci. Instrum. 71, 3111-3117 (2000). [CrossRef]
  25. K.-B. Song, E.-K. Kim, S.-Q. Lee, J. H. Kim, and K.-H. Park, "Fabrication of a high-throughput cantilever-style-aperture tip by the use of the Bird’s-beak effect," Jpn. J. Appl. Phys. 42, 4353-4356 (2003). [CrossRef]
  26. E. Kretschmann and H. Raether, "Radiative Decay of Non-Radiative Surface Plasmons Excited by Light," Zeitschrift für Naturforschung A  23, 2135 (1968).
  27. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).
  28. P. B. Johnson and R. W. Christy, "Optical Constants of Noble Metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  29. G. Leveque, C. G. Olson, and D. W. Lynch, "Reflectance spectra and dielectric functions for Ag in the region of interband transitions," Phys. Rev. B 27, 4654-4660 (1983). [CrossRef]
  30. J.-P. Berenger, "A Perfectly Matched Layer for the Absorption of Electromagnetic Waves," J. Computational Phys. 114, 185-200 (1994). [CrossRef]
  31. S. Patanè, E. Cefali, A. Arena, P. G. Gucciardi, and M. Allegrini, "Wide angle near-field optical probes by reverse tube etching," Ultramicroscopy 106, 475-479 (2006). [CrossRef] [PubMed]
  32. L. Novotny, D. W. Pohl, and B. Hecht, "Scanning near-field optical probe with ultrasmall spot size," Opt. Lett. 20, 970-972 (1995). [CrossRef] [PubMed]
  33. A. Dogariu, T. Thio, and L. J. Wang, "Delay of light transmission through small apertures," Opt. Lett. 26, 450-452 (2001). [CrossRef]
  34. H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1387 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited