OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 19 — Sep. 17, 2007
  • pp: 11952–11958

Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers

F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel  »View Author Affiliations

Optics Express, Vol. 15, Issue 19, pp. 11952-11958 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (208 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The guided modes of sub-wavelength diameter air-clad optical fibers exhibit a pronounced evanescent field. The absorption of particles on the fiber surface is therefore readily detected via the fiber transmission. We show that the resulting absorption for a given surface coverage can be orders of magnitude higher than for conventional surface spectroscopy. As a demonstration, we present measurements on sub-monolayers of 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA) molecules at ambient conditions, revealing the agglomeration dynamics on a second to minutes timescale.

© 2007 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(240.6490) Optics at surfaces : Spectroscopy, surface
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 15, 2007
Revised Manuscript: August 29, 2007
Manuscript Accepted: September 1, 2007
Published: September 5, 2007

F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, "Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers," Opt. Express 15, 11952-11958 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. V. Bordo and H.-G. Rubahn, Optics and spectroscopy at surfaces and interfaces (Wiley-VCH, Weinheim 2006).
  2. Ph. H. Paul and G. Kychakoff, "Fiber-optic evanescent field absorption sensor," Appl. Phys. Lett. 51, 12-14 (1987). [CrossRef]
  3. A. Messica, A. Greenstein, and A. Katzir, "Theory of fiber-optic, evanescent-wave spectroscopy and sensors," Appl. Opt. 35, 2274-2284 (1996). [CrossRef] [PubMed]
  4. Xh. Fang and W. Tan, "Imaging single fluorescent molecules at the interface of an optical fiber probe by evanescent wave excitation," Anal. Chem. 71, 3101-3105 (1999). [CrossRef] [PubMed]
  5. S. Simhony, I. Schnitzer, A. Katzir, and E. M. Kosower, "Evanescent wave infrared spectroscopy of liquids using silver halide optical fibers," J. Appl. Phys. 64, 3732-3734 (1988). [CrossRef]
  6. R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, "Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development," Fresen. J. Anal. Chem. 362, 349-373 (1998). [CrossRef]
  7. B. D. Gupta, H. Dodeja, A. K. Tomar, "Fiber-optic evanescent field absorption sensor based on a U-shaped probe," Opt. Quantum Electron. 28, 1629-1639 (1996). [CrossRef]
  8. H. Tai, H. Tanaka, and T. Yoshino, "Fiber-optic evanescent-wave methane-gas sensor using optical absorption for the 3.392-m line of a He-Ne laser," Opt. Lett. 12, 437-439 (1987). [CrossRef] [PubMed]
  9. J. Lou, L. Tong and Z. Ye, "Modeling of silica nanowires for optical sensing," Opt. Express 13, 2135-2140 (2005). [CrossRef] [PubMed]
  10. M. D. Marazuela and M. C. Moreno-Bondi, "Fiber-optic biosensors - an overview," Anal. Bioanal. Chem. 372, 664-682 (2002). [CrossRef] [PubMed]
  11. H. Proehl, Th. Dienel, R. Nitsche, and T. Fritz, "Formation of solid-state excitons in ultrathin crystalline films of PTCDA: from single moleules to molecular stacks," Phys. Rev. Lett. 93, 097403 (2004). [CrossRef] [PubMed]
  12. F. Le Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, "Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber," Opt. Commun. 242, 445-455 (2004). [CrossRef]
  13. S. R. Forrest, "Ultrathin organic films grown by organic molecular beam deposition and related techniques," Chem. Rev. 97, 1793-1896 (1997). [CrossRef]
  14. T. A. Birks and Y. W. Li, "The shape of fiber tapers," J. Lightwave Technol. 10, 432-438 (1992). [CrossRef]
  15. J. D. Love and W. M. Henry, "Quantifying loss minimisation in single-mode fibre tapers," Electron. Lett. 22, 912-914 (1986). [CrossRef]
  16. S. R. Forrest and Y. Zhang, "Ultrahigh-vacuum quasiepitaxial growth of model van der Waals thin-films, I. Theory," Phys. Rev. B 49, 11297-11308 (1994).
  17. The absorption cross section of PTCDA was calculated from the molar extinctions coefficient ∑ of PTCDA in solution [M. Hoffmann, K. Schmidt, T. Fritz, T. Hasche, V. M. Agranovich, and K. Leo, "The lowest energy frenkel and charge-transfer excitons in quasi-one-dimensional structures: application to MePTCDI and PTCDA crystals," Chem. Phys. 258, 73-96 (2000)] according to ⌠ = 2.303/NA ×∑. We note that the averaged ⌠ on the fiber may differ from the value obtained in solution by a factor of the order of one due to geometric reasons and differences in the refractive indices.
  18. H. Proehl, R. Nitsche, Th. Dienel, K. Leo, and T. Fritz, "In situ differential reflectance spectroscopy of thin crystalline films of PTCDA on different substrates," Phys. Rev. B 71, 165207 (2005).
  19. The offset accounts for the fact that spectrum B still contains a monolayer component and thus an admixture of spectrum A.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited