OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 19 — Sep. 17, 2007
  • pp: 12017–12029

Plasmon resonance-based optical trapping of single and multiple Au nanoparticles

K. C. Toussaint, Jr., M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, and N. F. Scherer  »View Author Affiliations

Optics Express, Vol. 15, Issue 19, pp. 12017-12029 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (23716 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The plasmon resonance-based optical trapping (PREBOT) method is used to achieve stable trapping of metallic nanoparticles of different shapes and composition, including Au bipyramids and Au/Ag core/shell nanorods. In all cases the longitudinal plasmon mode of these anisotropic particles is used to enhance the gradient force of an optical trap, thereby increasing the strength of the trap potential. Specifically, the trapping laser is slightly detuned to the long-wavelength side of the longitudinal plasmon resonance where the sign of the real component of the polarizability leads to an attractive gradient force. A second (femtosecond pulsed) laser is used to excite two-photon fluorescence for detection of the trapped nanoparticles. Two-photon fluorescence time trajectories are recorded for up to 20 minutes for single and multiple particles in the trap. In the latter case, a stepwise increase reflects sequential loading of single Au bipyramids. The nonlinearity of the amplitude and noise with step number are interpreted as arising from interactions or enhanced local fields amongst the trapped particles and fluctuations in the arrangements thereof.

© 2007 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(180.0180) Microscopy : Microscopy
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:

Original Manuscript: July 17, 2007
Revised Manuscript: August 15, 2007
Manuscript Accepted: August 15, 2007
Published: September 6, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, and N. F. Scherer, "Plasmon resonance-based optical trapping of single and multiple Au nanoparticles," Opt. Express 15, 12017-12029 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  2. A. Ashkin, "Optical trapping and manipulation of neutral particles using lasers," Proc. Natl. Acad. Sci. 94, 4853-4860 (1997). [CrossRef] [PubMed]
  3. A. Ashkin, Optical trapping and manipulation of neutral particles using lasers, World Scientific (2006). [CrossRef]
  4. K. Dholakia and P. Reece, "Optical micromanipulation takes hold," Nano Today 1, 18-27 (2006). [CrossRef]
  5. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  6. G. M. Wang, E. M. Sevick, E. Mittag, D. J. Searles, D. Evans, "Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales," Phys. Rev. Lett. 89, 050601 (2002). [CrossRef] [PubMed]
  7. M. D. Wang, J. M. Schnitzer, H. Yin, R. Landick, J. Gelles, S. M. Block, "Force and velocity measured for single molecules of RNA polymerase," Science 282, 902-907 (1998). [CrossRef] [PubMed]
  8. J. Liphardt, B. Onoa, S. B. Smith, I. Tinoco, Jr., C. Bustamante, "Reversible unfolding of single RNA molecules by mechanical force," Science 292, 733-737 (2001). [CrossRef] [PubMed]
  9. E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974-1977 (1998). [CrossRef]
  10. K. C. Neuman and S. M. Block, "Optical trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004). [CrossRef]
  11. P. A. Prentice, M. P. MacDonald, T. G. Frank, A. Cuschieri, G. C. Spalding, W. Sibbett, P. A. Campbell, K. Dholakia,"Manipulation and filtration of low index particles with holographic Laguerre-Gaussian optical trap arrays," Opt. Express 12, 593-600 (2004). [CrossRef] [PubMed]
  12. K. Svoboda and S. M. Block, "Optical trapping of metallic Rayleigh particles," Opt. Lett. 19, 930-932 (1994). [CrossRef] [PubMed]
  13. A. Zelenina, R. Quidant, M. Nieto-Vesperinas, "Enhanced optical forces between coupled resonant metal nanoparticles," Opt. Lett. 32, 1156-1158 (2007). [CrossRef] [PubMed]
  14. ´ E. Lamothe, G. Lévêque, O. J. F. Martin, "Optical forces in coupled plasmonic nanosystems: near field and far field interaction regimes," Opt. Express 15, 9631-9644 (2007). [CrossRef] [PubMed]
  15. M. M. Burns, J.-M. Fournier, J. A. Golovchenko, "Optical binding," Phys. Rev. Lett. 63, 1233-1236 (1989). [CrossRef] [PubMed]
  16. J. Plewa, E. Tanner, D.M. Mueth, D. G. Grier, "Processing carbon nanotubes with holographic optical tweezers," Opt. Express 12, 1978-1981 (2004). [CrossRef] [PubMed]
  17. S. Tan, H. A. Lopez, C. W. Cai, Y. Zhang, "Optical trapping of single-walled carbon nanotubes," Nano Lett. 4, 1415-1419 (2004). [CrossRef]
  18. R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, D. G. Grier, "Manipulation and assembly of nanowires with holographic optical traps," Opt. Express 13, 8906-8912 (2005). [CrossRef] [PubMed]
  19. P. M. Hansen, V. K. Bhatia, N. Harrit, L. Oddershede, "Expanding the optical trapping range of gold nanoparticles," Nano Lett. 5, 1937-1942 (2005). [CrossRef] [PubMed]
  20. J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, D. Hanstorp, "Optical spectroscopy of single trapped metal nanoparticles in solution," Nano Lett. 4, 115-118 (2004). [CrossRef]
  21. Y. Seol, A. E. Carpenter, T. T. Perkins, "Gold nanoparticles: Enhanced optical trapping and sensitivity coupled with significant heating," Opt. Lett. 31, 2429-2431 (2006). [CrossRef] [PubMed]
  22. A. Ashkin and J. M. Dziedzic, "Observation of resonances in the radiation pressure on dielectric spheres," Phys. Rev. Lett. 38, 1351-1354 (1977). [CrossRef]
  23. S. Chu, J. E. Bjorkholm, A. Ashkin, A. Cable, "Experimental observation of optically trapped atoms," Phys. Rev. Lett. 57, 314-317 (1986). [CrossRef] [PubMed]
  24. R. R. Agayan, F. Gittes, R. Kopelman, C. F. Schmidt, "Optical trapping near resonance absorption," Appl. Opt. 41, 2318-2327 (2002). [CrossRef]
  25. D. T. Chiu and R. N. Zare, "Biased diffusion, optical trapping, and manipulation of single molecules in solution," J. Am. Chem. Soc. 118, 6512-6513 (1996). [CrossRef]
  26. M. A. Osborne, S. Balabramanian, W. S. Furey, D. Klenerman, "Optically biased diffusion of single molecules studied by confocal fluorescence microscopy," J. Phys. Chem. B 102, 3160-3167 (1998). [CrossRef]
  27. T. Iida and H. Ishihara, "Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition," Phys. Rev. Lett. 90, 057403 (2003). [CrossRef] [PubMed]
  28. M. Pelton, "Comment on ‘Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition’," Phys. Rev. Lett. 92, 89701 (2004). [CrossRef]
  29. J. R. Arias-Gonzlez and M. Nieto-Vesperinas, "Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions," J. Opt. Soc. Am A 20, 1201-1209 (2003). [CrossRef]
  30. A. S. Zelenina, R. Quidant, G. Cadenes, M. Nieto-Vesperinas, "Tunable optical sorting and manipulation of nanoparticles via plasmon excitation," Opt. Lett. 31, 2054-2056 (2006). [CrossRef] [PubMed]
  31. M. Pelton, M. Liu, S. Park, N. F. Scherer, P. Guyot-Sionnest, "Ultrafast resonant optical scattering from single gold nanorods: large nonlinearities and plasmon saturation," Phys. Rev. B 73, 155419 (2006). [CrossRef]
  32. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons (1983).
  33. M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, N. F. Scherer, "Optical trapping and alignment of single gold nanorods using plasmon resonances," Opt. Lett. 31, 2075-2077 (2006). [CrossRef] [PubMed]
  34. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002). [CrossRef] [PubMed]
  35. U. Krebig and M. Volmer, Optical Properties of Metal Clusters, Springer (1995).
  36. L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge University Press (2006).
  37. M. Liu and P. Guyot-Sionnest, "Synthesis and optical characterization of Au/Ag core/shell nanorods," J. Phys. Chem. B 108, 5882-5888 (2004). [CrossRef]
  38. M. Liu and P. Guyot-Sionnest, "Mechanism of silver(I)-assisted growth of gold nanorods and bipyrmids," J. Phys. Chem. B 109, 22192-22200 (2005). [CrossRef]
  39. R. M. Dickson, D. J. Norris,W. E. Moerner, "Simultaneous imaging of individual molecules aligned both parallel and perpendicular to the optic axis," Phys. Rev. Lett. 81, 5322-5325 (1998). [CrossRef]
  40. H. Xu and M. Käll, "Surface-plasmon-enhanced optical forces in silver nanoaggregates," Phys. Rev. Lett. 89, 246802 (2002). [CrossRef] [PubMed]
  41. A. J. Hallock, P. L. Redmond, L. E. Brus, "Optical forces between metallic particles," Proc. Natl. Acad. Sci. 102, 1280-1284 (2005). [CrossRef] [PubMed]
  42. B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, J. Liphardt,"Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles," Nano Lett. 5, 2246-2252 (2005). [CrossRef] [PubMed]
  43. K. C. Toussaint, Jr., S. Park, J. E. Jureller, N. F. Scherer, "Generation of optical vector beams with a diffractive optical element interferometer," Opt. Lett. 30, 2846-2848 (2005). [CrossRef] [PubMed]
  44. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system," Proc. R. Soc. A. 253, 358-379 (1959). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2351 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited