OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 2 — Jan. 22, 2007
  • pp: 325–338

Identification of Bloch-modes in hollow-core photonic crystal fiber cladding

F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S.A. Maier  »View Author Affiliations


Optics Express, Vol. 15, Issue 2, pp. 325-338 (2007)
http://dx.doi.org/10.1364/OE.15.000325


View Full Text Article

Enhanced HTML    Acrobat PDF (2369 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the experimental visualization of the cladding Bloch-modes of a hollow-core photonic crystal fiber. Both spectral and spatial field information is extracted using the approach, which is based on measurement of the near-field and Fresnel-zone that results after propagation over a short length of fiber. A detailed study of the modes near the edges of the band gap shows that it is formed by the influence of three types of resonator: the glass interstitial apex, the silica strut which joins the neighboring apexes, and the air hole. The cladding electromagnetic field which survives the propagation is found to be spatially coherent and to contain contributions from just a few types of cladding mode.

© 2007 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 16, 2006
Revised Manuscript: January 11, 2007
Manuscript Accepted: January 12, 2007
Published: January 22, 2007

Citation
F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, "Identification of Bloch-modes in hollow-core photonic crystal fiber cladding," Opt. Express 15, 325-338 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-325


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. J. Mangan, L. Farr, A. Langford,  et al., "Low loss (1.7 dB/km) hollow core photonic bandgap fiber," presented at the OFC 2004, 2004.
  2. F. Benabid, F. Couny, J. C. Knight,  et al., "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005).
  3. F. Benabid, J. C. Knight, G. Antonopoulos,  et al., "Stimulated Raman Scattering in Hydrogen-filled hollow-core Photonic Crystal Fiber," Science 298, 399-402 (2002). [CrossRef] [PubMed]
  4. S. Ghosh, J. Sharping, D. G. Ouzounov,  et al., "Resonant optical interactions with molecules confined in Photonic Band-Gap Fibers," Phys. Rev. Lett. 94, 093902 (2005). [CrossRef] [PubMed]
  5. F. Benabid, P. S. Light, F. Couny,  et al., "Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF," Opt. Express 13, 5694 (2005). [CrossRef] [PubMed]
  6. F. Couny, P.S. Light, F. Benabid,  et al., "Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber," Opt. Commun. 263, 28-31 (2006). [CrossRef]
  7. T. A. Birks, P. J. Roberts, P. S. J. Russell,  et al., "Full 2-D photonic bandgaps in silica/air structures," Electron. Lett. 31, 1941-1943 (1995). [CrossRef]
  8. G. Humbert, J. Knight, G. Bouwmans,  et al., "Hollow core photonic crystal fibers for beam delivery," Opt. Express 12, 1477-1484 (2004). [CrossRef] [PubMed]
  9. J. West, C. Smith, N. Borrelli,  et al., "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485-1496 (2004). [CrossRef] [PubMed]
  10. K. Saitoh, N. Mortensen, and M. Koshiba, "Air-core photonic band-gap fibers: the impact of surface modes," Opt. Express 12, 394-400 (2004). [CrossRef] [PubMed]
  11. T. A. Birks, D. M. Bird, T. Hedley,  et al., "Scaling laws and vector effects in bandgap-guiding fibres," Opt. Express 12, 69-74 (2003). [CrossRef]
  12. F. Benabid and P. St. J. Russell, "Hollow-core PCF; progress and prospects," Proc. SPIE 5733, 176-190 (2005). [CrossRef]
  13. G. Antonopoulos, F. Benabid, T. A. Birks,  et al., "Experimental demonstration of the frequency shift of bandgaps in photonic crystal fibers due to refractive index scaling," Opt. Express 14, 3000-3006 (2006). [CrossRef] [PubMed]
  14. P. Yeh and A. Yariv, "Bragg reflection waveguides," Opt. Commun. 19, 427-430 (1976). [CrossRef]
  15. P. Yeh, A. Yariv, and E. Marom, "Theory of Bragg fiber," J. Opt. Soc. Am 68, 1196-1201 (1978). [CrossRef]
  16. P. Yeh, Optical waves in layered media (John Wiley and Sons, New York, 1988).
  17. M. A. Duguay, Y. Kukubun, T. L. Koch,  et al., "Antiresonant reflecting optical waveguides in Sio2-Si multilayer strucutures," Appl. Phys. Lett. 49, 13-15 (1986). [CrossRef]
  18. N. Litchinitser, S. Dunn, B. Usner,  et al., "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003). [CrossRef] [PubMed]
  19. N. M. Litchinister, A. K. Abeeluck, C. Headley,  et al., "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett. 27, 1320-1323 (2002).
  20. T. A. Birks, G. J. Pearce, and D. M. Bird, "Approximate band structure calculation for photonic bandgap fibres," Opt. Express 14, 9483-9490 (2006). [CrossRef] [PubMed]
  21. N. W. Aschcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, PA 19105, 1976).
  22. T. P. White, R. C. McPhedran, C. M. De Sterke,  et al., "Resonance and scattering in microstructured optical fibers," Opt. Lett. 27, 1977-1979 (2002). [CrossRef]
  23. J. Lægsgaard, "Gap formation and guided modes in photonic bandgap fibres with high-index rods," J. Opt. A: Pure Appl. Opt. 6, 798-804 (2004). [CrossRef]
  24. P. Steinvurzel, C. M. De Sterke, M. J. Steel,  et al., "Single scatterer Fano resonances in solid core photonic band gap fibers," Opt. Express 14, 8797-8811 (2006). [CrossRef] [PubMed]
  25. Here the triangular lattice labeling refers to the placement of the air holes. Though the cladding structure of the fiber could be seen as a set of silica rods aligned in a honeycomb lattice, we keep the triangular labeling for historical reasons.
  26. J. B. Jensen, L. H. Pedersen, P. E. Hoiby,  et al., "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004). [CrossRef] [PubMed]
  27. C. M. Smith, N. Venkataraman, M. T. Gallagher,  et al., "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003). [CrossRef] [PubMed]
  28. P. J. Roberts, F. Couny, H. Sabert,  et al., "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13, 236-244 (2005). [CrossRef] [PubMed]
  29. T. D. Hedley, D. M. Bird, F. Benabid,  et al., "Modelling of a novel hollow-core photonic crystal fibre," presented at the Quantum Electronics and Laser Science, 2003. QELS. Postconference Digest, pp. 2, (2003).
  30. J. M. Pottage, D. M. Bird, T. D. Hedley,  et al., "Robust photonic band gaps for hollow core guidance in PCF made from high index glass," Opt. Express 11, 2854-2861 (2003). [CrossRef] [PubMed]
  31. N. A. Mortensen and M. D. Nielsen, "Modeling of realistic cladding structures for air-core photonic bandgap fibers," Opt. Lett. 29, 349-351 (2004). [CrossRef] [PubMed]
  32. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  33. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  34. J. D. Shephard, P. J. Roberts, J. D. C. Jones,  et al., "Measuring beam quality of Hollow Core Photonic Crystal Fibers," J. Lightwave Technol. 24, 3761-3769 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (2364 KB)     
» Media 2: AVI (2324 KB)     
» Media 3: AVI (2209 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited